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Introduction

„Even if you fall on your face, you’re still moving
forward.

— Victor Kiam

The original motivation for this thesis was to address questions in the field of computational
drug design. The main objective was how to evaluate whether a given ligand matches well
to a malicious receptor molecule to inhibit the latter’s biological activity. This required the
development of methods for analyzing molecules. However, almost all the findings presented
in this thesis are of such a general nature that they can be applied to any moving objects.

The topic concerned, the ”analysis of moving objects“, falls within the field of ergodic
theory, which was originally developed in the year 1930 [6, 39]. At that time, the main
concern was the long-term behavior of an object. Given data for a moving object, how could
the probability of the object being found in a certain area be computed? Or, in other words,
how could the stationary measure of the system be computed? In the field of drug design, a
ligand is considered to be a good inhibitor if it binds to a receptor and remains there. This
leads to the different question of how to find the so-called metastable sets, i.e. areas where
there is a high probability that the object will remain. In order to clarify why this is actually a
different question to that of computing the stationary measure, let us consider the following
example. Suppose that our moving object is the German population, and consider as areas a
supermarket and a jail. Since most people are usually more often in a supermarket then in
jail, the stationary probability of being in a supermarket is much higher than that of being in
jail. At the same time, the probability of remaining in prison once one has arrived there is
much higher than the probability of staying in a supermarket.

For reversible processes, a machinery has been developed in recent decades [52] for
extracting metastable sets from data using the clustering method Robust Perron Cluster
Analysis (PCCA+) [14]. Reversible processes are described by the property that they keep
the same probability law even if their movement is considered backwards in time. Many
models for molecules turn out to be reversible. The machinery makes use of an old tool,
known as the transfer operator. This continues to be the most modern and eloquent
description of moving objects. Its universal ability to describe stochastic and deterministic
processes for finite measures was developed in 1954 by Hopf [23]. Although this tool
has now been known for quite some time, the author of this thesis is able to bring some
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crucial properties of this operator to light. One of these is that transfer operators and
Markov operators are equivalent. This is a slightly extension of a theorem proved by Foguel
[20]. In addition, the author also characterizes the class of adjoint transfer operators with
arbitrary measure. Finally, the author characterizes the class of adjoint transfer operators
with invariant measures. The last characterization has not only remained undiscovered,
but was actually denied by Brown in the year 1966 [10]. In short, the author gives a neat
characterization for transfer and adjoint transfer operators in the first chapter.

After identifying what a transfer operator really is, we will be confronted by the problem
of how to obtain a Galerkin projection of the transfer operator. A Galerkin projection is a
matrix representation of a projection from the transfer operator to a finite dimensional space.
The first steps in this direction were taken by Ulam in 1960 [57], and it is still the subject
of ongoing research [53]. The entries of the Galerkin projection can be approximated by
using Monte Carlo methods by a short-term trajectory and a long-term trajectory approach.
For both concepts, the author is able to find an analytical expression of the error by the
difference in the L2 norm between the true Galerkin entry and the Monte Carlo approxi-
mation, depending on the number of random variables used. The analytical expression of
the error can again be approximated to reveal the error of the entries from the Galerkin
projection. As a byproduct, a universal property for reversible processes is revealed, showing
that reversible processes are more likely to return to a set than to stay there. This char-
acteristic had remained undiscovered from 1935, when Kolmogorov [16] first introduced
reversible processes, until now. Further, the author provides a reweighting scheme, which
was developed together with Christof Schütte and Marcus Weber, that offers a solution
to one of the main problems in computational drug design, namely: How to test several
similar ligands on a single, very large receptor molecule. Such computations are very cost
intensive and it is unfortunate that for each new ligand a complete new Galerkin projection
is necessary, even though the systems are very similar. In the proposed reweighting scheme,
we exploit the fact that the systems are similar, and are able to compute a Galerkin projection
of a system by reusing the trajectories from a different system. The author was able to
extend this reweighting scheme to be usable even in cases where the ligands’ dimensions
differ.

Finally, we come to the main result of this thesis, which tackles one of the major problems
of computing a Galerkin projection, namely the numerical error which occurs when a
Galerkin projection is computed. Specifically, for a reversible process the exact Galerkin
projection has a reversible property which guarantees that the matrix has real eigenvalues
and eigenvectors. These real eigenvalues and eigenvectors are essential in order to identify
the metastable sets with PCCA+. The computation of a Galerkin projection for a large
molecule is extremely challenging, and the computed matrix all too easily loses its reversible
property and returns complex eigenvalues and eigenvectors due to numerical errors. In such
cases, identification of the metastable sets is not possible with PCCA+. The author shows
that for each Galerkin projection we can find a closest matrix which maintains the reversible
property and thus provides us with real eigenvalues and eigenvectors. The computation
can be obtained by solving a convex quadratic minimization problem. Thus, regardless of
how severely the computed Galerkin projection is influenced by numerical errors, it can be
corrected to restore its reversible property and to enssure that it possesses real eigenvalues
and eigenvectors, in order to be able to use PCCA+ for the identification of metastable
sets. As a result, we succeed in devising a solid computation scheme for metastable sets for
arbitrary processes.
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Thesis Structure

Chapter 1 - Operators

We give a brief overview of relevant tools from measure theory, Markov chains on a measur-
able state space, and ergodic theory, in order to introduce rigorously the transfer operator.
We show that the transfer operator propagates probability densities of a Markov chain on
a measurable state space. Then we show that transfer operators are identical to Markov
operators, and how they are related to sub Markov operators. Finally, we characterize adjoint
transfer operators and relate them to Brown-Markov operators. This reveals a connection
that has been denied for the past 50 years.

Chapter 2 - Computation Schemes

We start this chapter with a summary of the current methods for computing metastable sets
and approximating the transfer operator. This leads to the task of computing certain entries
of a Galerkin projection matrix. We describe how to approximate these entries and we give
an exact formula for the error. As a byproduct, this reveals an interesting characteristic
of reversible processes. Finally, we introduce a new reweighting scheme, showing how
trajectories for a previous Galerkin projection can be used to receive a new one if the
dynamical system is changed.

Chapter 3 - Make it Reversible

We show that every Galerkin projection of a reversible process has a certain property which
is used in order to find the metastable sets. Unfortunately, this property is sometimes lost
because of numerical estimation errors. In this chapter, we show that for any given stochastic
matrix, and any norm induced by a scalar product, there exists a unique closest matrix that
maintains this important property. We proof the theoretical existence and uniqueness, and
we show how this recovered matrix can be found with the help of a convex optimization
scheme. In addition, we introduce a specific norm such that the corresponding closets matrix
will also preserver the spectrum.

This machinery enables use of the clustering method PCCA+ for arbitrary processes.

Contents 3





1Operators

„Poetry is the art of giving different names to the same
thing - Mathematics is the art of giving the same
name to different things.

— Henri Poincaré

In order to understand dynamical systems, it is fundamental to understand how probability
densities evolve according to a dynamical system. The operator that transports associated
probability densities is called the transfer operator. This operator was identified by Hopf in
1954, and has received particular attention in recent decades because of his application to
analyze molecules [52]. The transfer operator will be comprehensively explicated in this
chapter. Also, we will identify the relations between transfer, Markov, generalized Koopman
and Brown-Markov operators.

1.1 Fundamentals

In order to introduce the main object of this thesis, namely the transfer operator, some
mathematical tools are needed. Therefore, we start with a glimpse of one of the most
beautiful areas of mathematics, which has its roots in the late 19th century.

Measure Theory
It all begins with the definition of a σ-algebra which was first introduced by E. Borel in 1933
[30, II. §2]. We denote with E an arbitrary set and with P(E) = {A | A ⊆ E} the power set
of E.

Definition 1.1.1. A family of sets Σ ⊆ P(E) is called a σ-algebra of E if:

• E ∈ Σ holds.

• For each A ∈ Σ we have E\A ∈ Σ.

• For any sequence (Ak)k∈N with Ak ∈ Σ we have
⋃
k∈NAk ∈ Σ.

The beauty of the concept of an abstract integral is that it has a wide range of properties
but only spartan requirements. We only need a σ-Algebra and a corresponding measure for
its definition.

Definition 1.1.2. A map µ : Σ→ R is called a signed measure on a σ-algebra Σ if

• µ(∅) = 0 and
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• For any sequence (Ak)k∈N with Ak ∈ Σ and Ai ∩ Aj = ∅ for i 6= j, it follows that
µ(
⋃
k∈NAk) =

∑
k∈N µ(Ak) holds.

If µ is a non-negative function, then it is called a measure.

Since a σ-algebra together with a measure will build the fundament for the upcoming
abstract integral, we will give it a name.

Definition 1.1.3. A touple (E,Σ) is called a measurable space if Σ is a σ-algebra of E. A
triple (E,Σ, µ) is called a measure space if (E,Σ) is a measurable space and µ is a measure on
Σ. A measure space is called σ -finite measure space if there exists a sequence (Ai)i∈N, Ai ∈ Σ,
satisfying

E =
⋃
i∈N

Ai and µ(Ai) <∞ for all i ∈ N.

A measure space is called a probability space if µ(E) = 1.

Throughout this thesis we will always consider σ-finite measure spaces. This stipulation
may appear minor, but it is no exaggeration to state that the whole theory which will be
developed in this chapter rest upon it. One may note that any finite measure is in particular
σ-finite, and that Rd together with the Lebesgue Measure is σ-finite with Ai = [−i, i]d.
Finally, in order to define the abstract integral, a certain class of functions will play an
essential role.

Definition 1.1.4. Denote with (E,Σ, µ) a measure space and with (M,ΣM ) a measurable
space. A function f : E →M is called measurable if

A ∈ ΣM ⇒ f−1(A) ∈ Σ

holds. If (E,Σ, µ) is a probability space, then f is called random variable.

In the following, we denote with (E,Σ, µ) a σ-finite measure space and with K ∈ {R,C}
either the real or complex numbers. We denote with B(K) the Borel σ-algebra on K, i.e.
the smallest σ-algebra of K which contains all open sets. For any measurable function
f : E → K ∪ {+∞, −∞} one can define the Lebesgue integral [3, Definition 12.1]∫

E

|f(x)|µ(dx) (1.1)

which is a value in R ∪ {∞}. When the integral (1.1) is finite, f is called µ-integrable and in
this case the symbol

∫
E
f(x)µ(dx) can also be assigned to a value in K. We will denote for a

set A ∈ Σ with

1A : E → {1, 0}, 1A(x) =

1 if x ∈ A,

0 else,

the characteristic function of A. For a set A ∈ Σ, we define the integral over a set A for
µ-integrable function f as

∫
A
f(x)µ(dx) :=

∫
E
f(x)1A(x)µ(dx). For a probability space

(E,Σ, µ) we denote the expectation value for a random variable Y : E → R as

Eµ[Y ] =
∫
E

Y (x)µ(dx) (1.2)

if it exists. We will use the abbreviation

E := EP

6 Chapter 1 Operators



whenever we want to denote the expectation according to the probability measure P. We
will often use that for a random variable X : Ω→ E on the probability space (Ω,A,P) which
is distributed according to µ, i.e. P[X ∈ A] = µ(A) for all A ∈ Σ, we have that for any
measurable function f : E → [0,∞] it holds that

E[f(X)] =
∫
E

f(x)µ(dx), (1.3)

this follows from [3, Proposition 19.1]. Although it might be unclear how to imagine an
abstract integral on some set E with an arbitrary measure, it still preserves many pleasant
convergence properties which are true for the Lebesgue integral on Rd, including some
that turned out to be wrong for the ancient Riemann integral. Two measurable functions
f, g : E → R are said to be µ-almost surely equal if there exists a set A ∈ Σ with µ(A) = 0
and

f(x) = g(x) for all x ∈ E\A.

Proposition 1.1.5 ([34, Proposition 2.1.1]). Given two measurable function f, g : E → R,
then ∫

A

f(x)µ(dx) =
∫
A

g(x)µ(dx) for all A ∈ Σ ⇔ f = g µ-almost surely.

This implies the following useful property.

Proposition 1.1.6. For a measurable function f : E → R we have∫
A

f(x)µ(dx) ≥ 0 for all A ∈ Σ ⇔ f ≥ 0 µ-almost surely.

Proof. The implication from right to left follows from the monotonicity of the integral [3,
Proposition 12.4, Property (12.3)]. For the other implication, it suffices to show that we have
µ(A) = 0 for A := {x | f(x) < 0}. From the precondition, we have

∫
B
f(x)1A(x)µ(dx) ≥ 0

for all B ∈ Σ and from the monotonicity of the integral we get∫
B

f(x)1A(x)µ(dx) = 0 =
∫
B

0µ(dx)

for all B ∈ Σ. By Proposition 1.1.5 we have f(x) · 1A(x) = 0 µ-almost surely and therefore
µ(A) = 0.

Another often used property is the following.

Proposition 1.1.7 ([3, Proposition 13.2]). For a measurable, non-negative function f : E → [0,∞]
it holds ∫

E

f(x)µ(dx) = 0 ⇔ f = 0 µ-almost surely.

Since the integral is well-defined for any non-negative function, one can derive the
following useful rule.

Proposition 1.1.8 (Monotone convergence theorem, [3, Proposition 11.4]). For any mono-
tonically increasing sequence of measurable, non-negative functions (fn)n∈N we have that
limn→∞ fn(x) is µ-integrable and it holds∫

E

lim
n→∞

fn(x)µ(dx) = lim
n→∞

∫
E

fn(x)µ(dx).

1.1 Fundamentals 7



We denote a sequence of functions (fn) which converge monotonically increasing to a
function f by

fn ↑ f.

A function f : E → R is called simple if one can write it as

f(x) =
n∑
i=1

αi1Ai

for αi ∈ R and Ai ∈ Σ for i = 1, . . . , n. The monotone convergence theorem is one of the
most important theorems in measure theory, because for any non-negative and measurable
function, one can find a sequence to which this theorem is applicable. As will be seen, this
will become one of the major tools in the upcoming proofs.

Proposition 1.1.9 ( [3, Proposition 11.6]). For any non-negative and measurable function
f : E → R exists a sequence of simple functions (fn)n∈N such that

fn ↑ f

holds.

If we look at a sequence of functions which are not necessarily non-negative and monotonic,
then one cannot apply the monotone convergence theorem. However, the following theorem
shows that one can obtain the same result by requiring instead an integrable and bounded
sequence of functions.

Proposition 1.1.10 (Dominated convergence theorem, [3, Proposition 15.6]). Given a
convergent sequence of measurable functions (fn)n∈N which are bounded by an integrable
function g, i.e. |fn| ≤ g µ-almost surely, then limn→∞ fn is µ-integrable and∫

E

lim
n→∞

fn(x)µ(dx) = lim
n→∞

∫
E

fn(x)µ(dx)

holds.

The next proposition is the essential tool for all theorems in this chapter. This theorem is
only valid because we required a σ-finite measure space (E,Σ, µ).

Proposition 1.1.11 (Radon-Nikodym theorem, [3, Proposition 17.10]). Denote with ν : Σ→
[0,∞] another measure. Then, there exists a measurable function g : E → [0,∞] with

ν(A) =
∫
A

g(x)µ(dx)

for every A ∈ Σ if and only if µ(A) = 0 implies ν(A) = 0 for every A ∈ Σ.

The Radon-Nikodym theorem provides us with the following useful tool.

Definition 1.1.12. Denote with (Ω,A,P) a probability space and with A′ ⊆ A another
σ-algebra from Ω. A function φ : Ω→ R is called the conditional expectation of a random
variable Y : Ω→ R under the condition A′ if

• φ is A′ measurable

• for all A′ ∈ A′ we get
∫
A′
Y (ω)P(dω) =

∫
A′
φ(ω)P(dω).
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We denote the conditional expectation then by E[Y | A′] := φ.

It follows from the Radon-Nikodym theorem that such a function φ always exists and that
it is unique [4, Chapter IV ]. Thus the symbol E[Y | A′] is well defined.

For the coming Markov and transfer operators, we will denote for 1 ≤ p <∞ with

Lp(E,Σ, µ) := {f : E → K | f is measurable, ||f ||Lp(µ) <∞}/N,

||f ||Lp(µ) :=
(∫

E

|f(x)|pµ(dx)
) 1
p

and with

L∞(E,Σ, µ) := {f : E → K | f is measurable, ||f ||∞ <∞}/N,

||f ||∞ := inf
A∈Σ,µ(A)=0

sup
x∈E\A

|f(x)|,

the Lebesgue spaces, where N is given by

N = {f : E → K | ∃A ∈ Σ with µ(A) = 0 and f |E\A = 0}.

In the following we neglect E and Σ and write only Lp(µ) instead of Lp(E,Σ, µ). If it is
clear from the context which measure µ is used, we use the abbreviation

||f ||p := ||f ||Lp(µ).

Due to Holder’s inequality, the term

〈f, g〉µ =
∫
E

f(x) g(x)µ(dx)

is well-defined for f ∈ Lp(µ) and g ∈ Lq(µ) with 1
q + 1

p = 1, for 1 ≤ p, q ≤ ∞, where 1
∞ := 0.

Finally, since this thesis is about the computation of a projected transfer operator, it seems
wise to introduce the orthogonal projection. This map lives on a Hilbert space H with scalar
product 〈, 〉, i.e. H is a complete vector space according to the norm || · || induced by the
scalar product by ||x|| =

√
〈x, x〉. In this thesis, we consider in most cases the Hilber space

L2(µ) together with the scalar product 〈, 〉µ where µ is a probability measure.

Definition 1.1.13. Given a Hilbert space H associated with the norm || · || induced by the
scalar product. For a closed subspace D ⊆ H we call a surjective map Q : H → D an
orthogonal projection if Q2 = Q and supx∈H,||x||=1 ||Qx|| = 1 holds.

For any closed subspaceD, a unique orthogonal projectionQ exists. Further, if {e1, . . . , en}
is a basis of D with

〈ei, ej〉 =

1 if i = j,

0 else,

then

Qx =
n∑
i=1
〈x, ei〉 ei (1.4)

holds [61, Proposition V.3.4, V.4.8, and V.5.9].
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Markov Chains
We denote with (E,Σ) a measurable space for a given set E and with (Ω,A,P) a probability
space.

Markov chains describe a class of stochastic processes without memory. In order to
introduce them, we need to begin with the definition of a stochastic process.

Definition 1.1.14. A stochastic process with index set I and state space E is a family of
random variables

(Xi)i∈I , Xi : Ω→ E

for all i ∈ I.

The definition of Markov chains has evolved over the past decades. In 1953 the term
Markov chain was used for stochastic processes with discrete or continuous index set I living
on a countable or finite state space E, see Doob or Chung [17, 13]. However, many models
of practical interest live on the state space E = Rd and thus it is more natural to consider
Markov chains on a measurable state space. We will follow the modern theory as it is found
in [37, 46, 18] which defines a Markov chain as a stochastic process with a discrete time
parameter but living on a measurable state space. It turns out that many results for the
countable state space carry over virtually unchanged to the measurable state space with the
proofs remaining beautifully clean and simple.

We are especially interested in time-homogeneous Markov chains, in which independent of
the time the probability to move from one state to another will remain fixed. Thus, a Markov
chain is defined by a law of transitions between states, which will be decoded in a transition
kernel. For example, if we have n states, and between two states i, j the probability for a
transition is pij , then the matrix [pij ] = P ∈ Rn×n represents a transition kernel. If E is not
finite, then the transition kernel cannot be represented by a matrix. In this case, we need
the following definition.

Definition 1.1.15. We call
p : E × Σ→ [0,∞]

a kernel iff

• A 7→ p(x,A) is a measure on Σ for all x ∈ E,

• x 7→ p(x,A) is measurable on E for all A ∈ Σ,

we call p a sub transition kernel if and only if p(x,E) ≤ 1, and we call p a transition kernel if
and only if p(x,E) = 1 holds.

A transition kernel is sometimes also called a Markov kernel [4, §36].
In order to introduce Markov chains on a measurable state space, it is helpful to mention

that with the symbol used for the integral according to a measure µ as defined in (1.1), we
already made an abuse of notation. Because on the one hand, a measure µ : Σ→ [0,∞] is
defined for measurable sets A ∈ Σ and evaluated by writing µ(A) and on the other hand
we write

∫
E
f(x)µ(dx) for every µ integrable function f . Note that µ(dx) is simply part of a

symbol to denote the corresponding integral and should not be confused with evaluating

10 Chapter 1 Operators



µ on dx, since dx is not a measurable set. Consider for some transition kernel p and fixed
x ∈ E the measure

µ′x : Σ→ [0, 1]

A 7→ p(x,A).

Then, we can write: ∫
E

f(y) p(x, dy) :=
∫
E

f(y)µ′x(dy).

Equipped with this notation, we are now prepared to introduce Markov chains. There is
a standard approach to construct Markov chains [37, 46, 18] that we will describe in the
following. First, consider the product space∏

i∈N
Ai := {(xi)i∈N | xi ∈ Ai for all i ∈ N} .

For a general state space (E,Σ), one defines the probability space as Ω :=
∏
i∈NE together

with a σ-algebra F := σ(M) where

M =
{∏
i∈N

Ei | Ei ∈ Σ, and there exists a N ∈ N with Ei = E for all i ≥ N

}
.

Then, we define for each n ∈ N a random variable Xn as follows. For ω = (xi)i∈N ∈ Ω we
set

Xn(ω) = xn.

Now for each transition kernel p and probability distribution µ we can construct a probability
measure Pµ in the following sense.

Proposition 1.1.16 ([46, Theorem 2.8 and Proposition 2.10]). For any transition kernel p
and probability measure µ exists a probability measure Pµ with

Pµ[X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An]

=
∫
A0

. . .

∫
An−1

p(yn−1, An) p(yn−2, dyn−1) . . . p(y0, dy1)µ(dy0)
(1.5)

for any n ∈ N, A0, . . . , An ∈ Σ.

Such a stochastic process will be called a time-homogeneous Markov chain, because the
evolution from Xn to Xn+1 always behaves in accordance with the probability measure
p(Xn, ·) for all n ∈ N.

Definition 1.1.17. A stochastic process (Xn)n∈N on (Ω,F ,Pµ) is called a time-homogeneous
Markov chain with transition kernel p and initial distribution µ if (1.5) is satisfied. We denote
this Markov chain by ((Xn)n∈N,Pµ)

We now extend our notation from (1.2) for the expectation value. For a Markov chain
((Xn)n∈N,Pµ) we denote for a random variable Z : Ω→ R the expectation value as

E[µ][Z] := EPµ [Z] =
∫

Ω
Z(ω)Pµ(dω) (1.6)

1.1 Fundamentals 11



if the integral exists. If µ is a dirac delta measure in x, i.e.

µ(A) =

1 , if x ∈ A

0 , else

we write Px and Ex instead of Pµ or E[µ]. The expectation value and the transition kernel p
have the following relation for a measurable function f ≥ 0∫

E

f(y) p(x, dy) = Ex[f(X1)], (1.7)

this follows from [46, Chapter 1, §2, (2.3)]. The beginning (X0, X1) of the Markov chain
from the transition kernel p fulfills

Pµ[X0 ∈ A,X1 ∈ B] =
∫
A

p(x,B)µ(dx) (1.8)

for any A,B ∈ Σ. One can show that one can embed any two random variablesX,Y : Ω→ E

into the beginning of a Markov chain, i.e. there exists a Markov chain ((Xn)n∈N,Pµ) with

P[X ∈ A, Y ∈ B] = Pµ[X0 ∈ A,X1 ∈ B]

for all A,B ∈ Σ, see [40, Theorem 2]. For a transition kernel p one can introduce a family
of transition kernels (pn)n∈N by

pn+1(x,A) :=
∫
E

pn(y,A) p(x, dy) (1.9)

for n ≥ 1 and p1 := p. For the Markov chain ((Xn)n∈N,Pµ) associated with the transition
kernel p we have

Pµ[Xn ∈ B,X0 ∈ A] =
∫
A

pn(x,B)µ(dx).

Similarly, one can define a Markov process for continuous time. In this situation, one
requires a family of transition kernels (pt)t∈I that fulfills

ps+t(x,A) =
∫
E

pt(x,A) ps(x, dy)

and p0(x,A) := 1A(x). We call such a family a Markov family. In addition, some require-
ments on (E,Σ) are needed. In particular, (E,Σ) must be a a polish space, i.e. (E,Σ) must
be a separable, completely metrizable, topological space. Under these requirements, we can
generalize the concept for Markov chains to any ordered index set I.

Proposition 1.1.18 ([4, Corollary 35.4 and Proposition 42.3]). Let (E,Σ) be a polish space.
For any Markov family (pt)t≥0 and probability measure µ exists a stochastic process (Xt)t≥0

and probability measure Pµ with

Pµ[Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtn ∈ Atn ]

=
∫
E

∫
A1

. . .

∫
An−1

psn(yn−1, An) psn−1(yn−2, dyn−1) . . . ps2(y1, dy2) pt1(y0, dy1)µ(dy0)

(1.10)
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with si = ti − ti−1.

We can now define a Markov process in a similar way.

Definition 1.1.19. A stochastic process (Xt)t≥0 on (Ω,F ,Pµ) is called a time-homogeneous
Markov process with transition kernel p and initial distribution µ if (1.10) is satisfied.

In particular, if (Xt)t≥0 is a Markov process, then for any lag time τ , the subfamily
(Xnτ )n∈N is a Markov chain with transition kernel p(x,A) := pτ (x,A).

Ergodic Theory
Ergodic theory is a branch of mathematics that studies the long-term behaviour of objects
that move according to a given law. Probably the first result in this field was that of Henri
Poincaré [44], which can be stated in the following measure theoretic form.

Denote with (E,Σ, µ) a finite measure space and with S : E → E a map that
satisfies µ(A) = µ(S−1(A)) for all A ∈ Σ. Then for any A ∈ Σ with µ(A) > 0 it
follows that µ-almost surely all points x ∈ A have the property that Snk(x) ∈ A
where (nk) ⊂ N is a monotonic sequence.

The condition µ(A) = µ(S−1(A)) implies that µ is an invariant measure. This shows that
regardless of how small the set A is, provided it has a positive invariant measure, almost all
trajectories that start in A will return infinitely often.

The word ergodic is a combination of two Greek words: ergon (work) and odos (path),
and was coined by Ludwig Boltzmann [7] at the time he stated his hypothesis:

“For large systems of interacting particles in equilibrium, the time average along a
single trajectory equals the space average.” 1

In the early days of ergodic theory, a trajectory was thought as the sequence of an iteration
of a map S : E → E on a measurable space (E,Σ, µ), then, the time average for a trajectory
starting in x ∈ E was defined as

lim
n→∞

1
n

n−1∑
k=0

f
(
Skx

)
and the space average could be defined if 0 < µ(E) <∞ as

1
µ(E)

∫
E

f(x)µ(dx).

Thus, the hypothesis could be be transformed in the measure theoretic formulation

lim
n→∞

1
n

n−1∑
k=0

f
(
Skx

)
= 1
µ(E)

∫
E

f(x)µ(dx) (1.11)

which, in general, is not correct. The first discovery of conditions under which these two
quantites proved equal was developed forty years later, in 1931, by von Neumann and

1During the 1870s and 1880s, various forms of the ergodic hypothesis were used by Boltzmann. The
here stated advanced formulation is inspired from [56].
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Birkhoff. Their respective versions of the ergodic theorem are often credited as the birth of
ergodic theory. Birkhoff’s version [6] can be stated as follows.

Given a probability space (E,Σ, µ) and a map S : E → E which satisfies µ(A) =
µ(S−1(A)) for all A ∈ Σ and for each invariant set A ∈ Σ, i.e. S−1(A) = A,
follows µ(A) = 1 or µ(A) = 0, then the Hypothesis (1.11) holds for any
µ-integrable function f .

The results were followed by a long list of publications in which authors tried to generalize
the concept, dropping constraints on S and on µ. A well-written general overview of the
development of ergodic theory between 1931 and 1948 is given by Halmos [22].

While Birkhoff’s formulation was only concerned with what happens when a single
trajectory converges, von Neumann’s formulation focused on the behavior of the whole
ensemble. For the moment, let us consider an operator U on a Hilbert space H with

sup
f∈H,||f ||=1

||Uf || ≤ 1.

It will become clear in the next section why operators that propagate probability distributions
fulfill this condition. Consider the space D = {h ∈ H | Uh = h} with the orthogonal
projection Q onto D from Definition 1.1.13. Von Neumanns’s mean ergoric theorem [33,
Theorem 1.4] states that

lim
N→∞

1
N

N−1∑
n=0

Unf = Qf (1.12)

holds for all f ∈ H. Initially, von Neumann’s theorem was only applied to operators
associated with a deterministic system. Twenty years later, Hopf extended this framework to
operators associated with Markov chains. This led to the rise of the transfer operator, which
will be described in the next section.

1.2 Transfer Operators

We denote with (E,Σ, µ) a σ-additive measure space and with (Ω,A,P) a probability space.
We start with the motivation of the transfer operator for a deterministic system. In this case,

Ulam [57] proposed calling this operator Frobenius-Perron operator, because he claimed
a conjecture2 about this operator that was motivated by the Frobenius-Perron theorem for
matrices. The Frobenius-Perron operator is usually introduced by an integral equation, which
can be motivated as follows. A deterministic system is given by a map S : E → E. One can
think of S as the deterministic movement from a point x to S(x). Consider the random
variable X : Ω → E with probability density f ∈ L1(µ), i.e P[X ∈ A] =

∫
A
f(x)µ(dx) for

A ∈ Σ. Then, the Frobenius-Perron operator T propagates the probability distribution in the
following sense:

P[S(X) ∈ A] =
∫
A

(T f)(x)µ(dx).

2See Chapter 2.
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Also, we get

P[S(X) ∈ A] = P[X ∈ S−1(A)] =
∫
S−1(A)

f(x)µ(dx).

This motivates the original definition of the Frobenius-Perron operator, which is given by the
solution of the integral equation∫

A

(T f)(x)µ(dx) =
∫
S−1(A)

f(x)µ(dx) (1.13)

for all A ∈ Σ and all µ-integrable functions f . It follows from the Radon-Nykodým Theorem
and Proposition 1.1.5 that this integral equation possess a unique solution

T : L1(µ)→ L1(µ),

if S−1 is µ-non singular, i.e. for any A ∈ Σ with µ(A) = 0 it follows µ(S−1(A)) = 0.
For a long time, ergodic theory was restricted to deterministic systems, i.e. determined

by a map S as above, and separated from the theory of Markov chains. In order to bring
ergodic theory together with Markov chains, a generalized operator was necessary which
was introduced by Hopf in 1954. Hopf’s operator propagates probability densities of a
Markov chain on a general state space with a finite measure and includes the Frobenius-
Perron operator. We will name the operator introduced by Hopf in [23] transfer operator.
Hopf’s article provides a short overview of the historical background, the origin and the
development of the transfer operator. A very short but nonetheless comprehensive book
about the ergodic theory of Markov chains on a measurable state space which is based on
the transfer operator introduced by Hopf was written by Foguel in 1969 [20].

We will now introduce the transfer operator and show its correspondence with general
Markov chains. In order to do this, one needs to replace the deterministic map S with a
transition kernel p and Equation (1.13) will change to Equation (1.14).

Definition 1.2.1. We call a linear operator

T : L1(µ)→ L1(µ)

a transfer operator if there exists a transition kernel p such that∫
E

p(x,A) f(x)µ(dx) =
∫
A

(T f)(x)µ(dx) (1.14)

holds for all A ∈ Σ and all f ∈ L1(µ).

We now show that the transfer operator propagates probability densities. Recall that the
transition kernel p induces a family of transitions kernels (pn)n∈N by (1.9). For each proba-
bility density f ∈ L1(µ), i.e. f ≥ 0 and

∫
E
f(x)µ(dx) = 1, Proposition 1.1.16 guarantees a

Markov chain ((Xn)n∈N,Pf ) with

Pf [Xn ∈ B,X0 ∈ A] =
∫
A

pn(x,B) f(x)µ(dx)
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for any A,B ∈ Σ. Thus, for any probability density f , the transfer operator Tn according to
transition kernel pn fulfills by definition∫

A

Tnf(x)µ(dx) = Pf [Xn ∈ A] (1.15)

this means Tnf is the probability density of Xn according to µ. One can show that the family
(Tn) is a semigroup, i.e.

TnTm = Tn+m

for n,m ∈ N, see [40, Proposition 2.1.9].
To clarify under which relation between a measure µ and a transition kernel p we can

assure the existence of a transfer operator, we introduce the following concept3.

Definition 1.2.2 (µ-compatible). A transition kernel p is called µ-compatible if and only if
for each A ∈ Σ with µ(A) = 0 we find a set B ∈ Σ with µ(B) = 0 and

p(x,A) = 0 for all x ∈ E\B. (1.16)

In other words, p is µ-compatible if for any A ∈ Σ with µ(A) = 0 it holds that p(·, A) = 0
µ-almost surely. One may notice that µ-compatibility is a weaker demand than absolute
continuity. To see that, consider the Lebesgue measurable space (Rn,B(Rn), λ) and a
transition kernel

p(x,A) =

1 if x ∈ A,

0 else.

Then, for each x ∈ E the measure p(x, ·) is a Dirac delta measure, and, therefore, not
absolutely continuous. However, p is λ-compatible, since for each set A ∈ B(Rn) with
λ(A) = 0 the set B := A meets (1.16). If the transition kernel is absolutely continuous for
every x ∈ E, then it is in particular µ-compatible, since Equation (1.16) is fulfilled for all µ
null sets with B = ∅.

We will show in the following that µ-compatibility is the necessary and sufficient condition
between µ and p to guarantee the existence of the transfer operator. In order to show the
existence, consider the following operator

U : L∞(µ)→ L∞(µ)

f 7→
(
x 7→

∫
E

f(y) p(x, dy)
)
.

(1.17)

Without any relation between the transition kernel p and the measure µ the operator U is
not necessarily well-defined.

Proposition 1.2.3. The operator from Equation (1.17) is well-defined if and only if the
associated transition kernel p is µ-compatible.

Proof. If p is µ-compatible, then consider two representatives f, g ∈ L∞(µ) of the same
equivalence class [f ] = [g], i.e.

f(x) = g(x) for all x ∈ E\A

3This definition can also be found in [33] under the name null preserving kernel.
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for a µ null set A. From the µ-compatibility, we obtain a µ null set B with

p(x,A) = 0 for all x ∈ E\B.

For x ∈ E\B, we obtain ∫
E

g(y) p(x, dy) =
∫
E\A

g(y) p(x, dy)

=
∫
E\A

f(y) p(x, dy)

=
∫
E

f(y) p(x, dy).

In other words: [∫
E

g(y) p(·, dy)
]

=
[∫

E

f(y) p(·, dy)
]
.

It is straightforward to show that Uf ∈ L∞(µ) holds.
We show now the other direction. If p is not µ-compatible, we find a set A ∈ Σ with

µ(A) = 0 and
p(·, A) 6= 0

µ-almost surely. It holds
1A = 0

µ-almost surely. Since

U0 =
∫
E

0 p(x, dy) = 0

and
U1A =

∫
E

1A p(x, dy) = p(x,A)

we get that if U is well-defined, then

p(·, A) = 0

µ-almost surely. This is a contradiction.

The following proposition states the existence of an operator T that satisfies

〈Ug, f〉µ = 〈g, T f〉µ (1.18)

for all g ∈ L∞, f ∈ L1(µ). This proves the existence of the transfer operator for µ-compatible
transition kernels, because replacing g by the indicator function 1B leads to Equation (1.14).
In general, for an arbitrary operator U : L∞(µ) → L∞(µ) an operator T that satisfies
Equation (1.18) does not exist. However, for an operator of the special form as in (1.17) it
does exist.

Proposition 1.2.4 ([40, Theorem 1]). Let p be a µ-compatible transition kernel and U be
defined as in Equation (1.17). Then there exists a unique operator T : L1(µ)→ L1(µ) with

〈Ug, f〉µ = 〈g, T f〉µ

for all g ∈ L∞, f ∈ L1(µ).
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The following result shows the importance of µ-compatibility.

Theorem 1.2.5. If and only if the transition kernel p is µ-compatible, there exists a transfer
operator

T : L1(µ)→ L1(µ)

associated with the transition kernel p as stated in Equation (1.14).

Proof. If p is µ-compatible, then the existence of such an operator T follows from Proposi-
tion 1.2.4, because T fulfills in particular Equation (1.14).

We now show that if such an operator T exists, then p is µ-compatible. Let us take a given
set A ∈ Σ with µ(A) = 0. It follows then that∫

E

p(x,A) f(x)µ(dx) =
∫
A

(T f)(x)µ(dx) = 0 (1.19)

for any f ∈ L1(µ), where the last equality follows from Proposition 1.1.7. Since (E,Σ, µ) is
σ-finite, we find a sequence (Ai)i∈N with µ(Ai) <∞ and

⋃
i∈NAi = E. Replacing f by 1Ai

in Equation (1.19) reveals a zero set Bi ∈ Σ with

p(x,A) = 0 for all x ∈ Ai\Bi

for all i ∈ N, see again Proposition 1.1.7. Defining B :=
⋃
i∈NBi gives together with

µ(B) = 0 and
p(x,A) = 0 for all x ∈ E\B

that p(·, A) is µ-almost surely zero.

One may also note that Definition 1.2.1 includes the definition of the Perron-Frobenius
operator4. For a µ non-singular map S one can define the µ-compatible transition kernel

p(x,A) := 1S−1(A)(x).

In fact, it can easily be shown that p is µ-compatible if and only if S is µ non-singular. The
associated transfer operator coincides with the Froebnius-Perron operator.

Stationary Measure
In most applications, stochastic systems often inherit a stationary measure. This is an
essential part of the clustering theory that will be presented shortly.

Definition 1.2.6. A probability measure µ : Σ→ [0, 1] is called a stationary measure of p if∫
A

µ(dx) =
∫
E

p(x,A)µ(dx) (1.20)

holds for all A ∈ Σ.

4This will follow immediately from Theorem 1.3.5, but one can also check it directly by hand.
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Firstly, one may note that Equation (1.20) implies for the associated family of transition
kernels (pn)n∈N from (1.9) that∫

E

pn+1(x,A)µ(dx) =
∫
E

∫
E

pn(y,A) p(x, dy)µ(dx)

(1.20)=
∫
E

pn(x,A)µ(dx)

= µ(A)

holds. Further, if ((Xn)n∈N,Pµ) is the Markov chain from Proposition 1.1.16 that evolves
according to p with stationary measure µ, then

Pµ[Xn ∈ A] =
∫
E

pn(x,A)µ(dx) =
∫
A

µ(dx) = Pµ[X0 ∈ A]

holds, which shows that all random variables Xn are equally distributed according to Pµ,
and thus legitimizes the name of the above definition.

If µ is a stationary measure of p, then p is µ-compatible. To show this, consider a set A ∈ Σ
with µ(A) = 0, we then obtain

0 =
∫
A

µ(dx) =
∫
E

p(x,A)µ(dx).

Since p is non-negative, it follows that p(·, A) is µ-almost surely zero , see Proposition 1.1.7.
Therefore, p meets (1.16).

As long as µ is a stationary measure of p, one can show that the transfer operator defined
here meets

Tn(Lp(µ)) ⊆ Lp(µ)

for p > 1 and is a contraction, this follows from the Jensen inequality, see [5]. It is unknown
if this still holds if p is only µ-compatible. It follows from Hölder’s inequality that whenever
µ is a finite measure, i.e. µ(E) < ∞, the Lp(µ) ⊆ L1(µ) for p ≥ 1. Therefore, when µ is a
stationary measure, we can consider Tn as an operator acting on

Tn : Lp(µ)→ Lp(µ)

for p ≥ 1. In particular for p = 2 we can apply von Neumann’s mean ergodic theorem since
L2(µ) is a Hilbert space and T is a contraction. If we further assume that T is ergodic, i.e.
that T f = f implies that f is constant, then one obtains a generalization of Equation (1.11)
for stochastic processes as follows

lim
N→∞

1
N

N−1∑
i=0

(T if)(x) (1.12)= Qf(x) (1.4)= 〈1, f〉µ 1(x) =
∫
E

f(x)µ(dx).

Reversibility
Reversible processes were introduced in 1935 by Kolmogorov [31, 16]. We will see later
that the transfer operator inherits very advantageous properties in the reversible case, which
we will exploit to introduce a machinery to analyze molecules.
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Definition 1.2.7. A transition kernel p is called reversible if for each A,B ∈ Σ it holds∫
A

p(x,B)µ(dx) =
∫
B

p(x,A)µ(dx) (1.21)

for a probability measure µ.

Replacing B = E in (1.21) shows that if a transition kernel p is reversible according to a
probability measure µ, then µ must be a stationary measure. The transfer operator T on
L2(µ) is called self-adjoint if and only if

〈T f, g〉µ = 〈f, T g〉µ

for all f, g ∈ L2(µ). The transfer operator T is self-adjoint if and only if its associated
transition kernel p is reversible [26, Proposition 1.1]. Thus, if the transition kernel p is
reversible, we have

T f(x) = Uf(x) (1.7)= Ex[f(X1)]. (1.22)

Examples

Deterministic Process

Let us consider the Lebesgue measure space ([0, 1],B([0, 1]), λ) and the map S(x) = x2. If
one wants to think of S as the deterministic process that maps x→ x2, the transition kernel
has to be defined as

p(x,A) = 1S−1(A)(x),

in other words, the probability of moving from x to A is 1 if x ∈ S−1(A) and 0 otherwise. In
this case, Equation (1.14) reduces to∫

A

T f(x) dx =
∫
S−1(A)

f(x) dx,

where we have replaced λ(dx) by dx. For a set [0, x] ∈ B(X) we have S−1([0, x]) = [0,
√
x].

With the fundamental theorem of calculus and the substitution rule it is possible to determine
the transfer operator analytically.

(T f)(x) = ∂

∂x

∫ x

0
(T f)(y) dy

= ∂

∂x

∫ √x
0

f(y) dy

= ∂

∂x

∫ x

0
f(√y) 1

2√y dy

= f(
√
x) 1

2
√
x
.

The propagation of f(x) = 1 is visualized in Figure 1.1.
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Figure 1.1: Propagation of equal distribution f(x) = 1.

Markov Chain

Let us consider the case where E = {1, . . . , n} is finite. A homogeneous Markov chain
(Xn)n∈N is then described by a transition matrix P ∈ Rn×n, i.e.

P (i, j) ≥ 0 and
n∑
j=1

P (i, j) = 1

for all i, j = 1, . . . , n. The transition kernel of this Markov chain is then defined on the
measure space (E,Σ) with Σ := P({1, . . . , n}) by

p(i, A) :=
∑
j∈A

pij

for A ∈ Σ and i = 1, . . . , n. One can identify a non-negative vector x ∈ Rn with a measure
νx acting on Σ := P({1, . . . , n}) through

νx(A) =
∑
i∈A

xi.

The transfer operator according to the measure ν1 for 1 = (1, . . . , 1)T is given by

T 1n x = (Pn)Tx.

A vector π ∈ Rn is stationary according to equation (1.20) if

πTP = πT

holds. If we denote

D :=


π1

. . .

πn


then the reversibility condition of Equation (1.21) according to measure νπ is fulfilled if

DP = PTD
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3

Figure 1.2: Three rooms. Figure 1.3: Three rooms with grid.

holds. The transfer operator T πn according to measure νπ is then given by

T πn x = Pnx.

Note that T πn and T 1n both still propagate probability densities, but according to different
measures. If x ∈ Rn is a probability density, i.e

∑n
i=1 xi = 1 and xi ≥ 0, then one can

either compute the propagated density with T 1n x or equivalently, but more complexly, as
DT πn D−1x. This propagation with T π looks complicated, because it requires converting
the probability density x to a probability density x̃ := D−1x associated with π, this means∑n
i=1 x̃iπi = 1 and x̃i ≥ 0, and then after the propagation, it must be converted back to a

normal probability density. For now it may just seem confusing to consider the operator T πn ,
but later we will see that we are primarily interested in the eigenvalues and eigenfunctions of
T πn in order to identify metastable sets. For a reversible Markov chain on a finite dimensional
state space, these are simply the right eigenvectors of the transition matrix P .

As an example of a Markov Chain, consider a three-room flat as in Figure 1.2. We discretize
the flat by a 20 × 20 grid into 400 cells, as visualized in Figure 1.3. We now define the
probability of moving from one such cell to another as follows. Any one cell can only move to
a neighboring cell with which it shares an edge. The probability of moving to any neighbored
cell is equally distributed. This gives rise to a transition matrix

P ∈ R400×400

which is sparse, because in each row there are only a maximum of four non-zero entries.
Furthermore, let us denote with x ∈ R400 a probability vector, i.e

400∑
i=1

x(i) = 1 and x(i) ≥ 0

for all i = 1, . . . , 400, which is mainly distributed in the room in the bottom right corner.
This probability vector will then be propagated by the transfer operator and spreads through
all the rooms as shown in Figure 1.4.
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Figure 1.4: Propagation from vector x (left) to T 1100x (middle) and to T 1700x (right).

1.3 Related Operators

In this section, we will discover characterizations of the transfer operator and adjoint transfer
operator that are independent of a transition kernel. Transfer operators will be identified by
Markov operators, adjoint transfer operators will be identified by Koopman operators, and
Brown-Markov operators will be identified to be the class of adjoint transfer operators with
an invariant measure.

We denote again with (E,Σ, µ) a σ-finite measure space on any given set E.

Markov Operators
Note that each transfer operator T uniquely determines its transition kernel p µ-almost
surely and, conversely, a µ-compatible transition kernel p uniquely determines the transfer
operator5 by the integral Equation (1.14). We will show in the following that there is a
completely different characterization of transfer operators.

Definition 1.3.1. A linear operator P : L1(µ)→ L1(µ) satisfying

(i) Pf ≥ 0 for all f ≥ 0, f ∈ L1(µ)

(ii) ||Pf ||1 ≤ ||f ||1 for all f ∈ L1(µ)

is called a sub Markov operator. If in addition

(iii) ||Pf ||1 = ||f ||1 for all f ≥ 0, f ∈ L1(µ)

holds, then P is called a Markov Operator.

A Markov Operator is already defined by the properties (i) and (iii), since they imply
Property (ii) [34, Proposition 3.1.1]. The following property of Markov operators will be of
great help in the proofs that follow.

Proposition 1.3.2. For a sub Markov operator P and for f, fn ∈ L1(µ) with fn ↑ f and
fn ≥ 0 it follows∫

A

lim
n→∞

Pfn(x)µ(dx) = lim
n→∞

∫
A

Pfn(x)µ(dx) =
∫
A

Pf(x)µ(dx)

5Both directions follow from Proposition 1.1.5. The first direction additionally requires a σ-additive
argument.
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for any A ∈ Σ.

Proof. We get for A ∈ Σ

0 ≤
∫
A

(P (f − fn))(x)µ(dx)

(i)
≤
∫
E

(P (f − fn))(x)µ(dx)

(ii)
≤
∫
E

(f − fn)(x)µ(dx)→ 0

by the monotonic convergence theorem. This shows∫
A

Pf(x)µ(dx) = lim
n→∞

∫
A

Pfn(x)µ(dx).

Again, since (Pfn)n∈N is monotonically increasing, applying the monotonic convergence
theorem reveals

lim
n→∞

∫
A

Pfn(x)µ(dx) =
∫
A

lim
n→∞

Pfn(x)µ(dx).

Further, sub Markov operators can be characterized by

Proposition 1.3.3 ([20, Chapter 1]). For any sub Markov Operator P : L1(µ)→ L1(µ) exists
a sub transition kernel p with∫

E

p(x,A) f(x)µ(dx) =
∫
A

Pf(x)µ(dx)

for all f ∈ L1(µ).

From the last two propositions we get, with the help of the monotonic convergence
theorem, the following useful characterization.

Corollary 1.3.4. For f, fn ∈ L1(µ) with fn ↑ f and fn ≥ 0 it follows

lim
n→∞

∫
E

Pfn(x)µ(dx) =
∫
E

p(x,E) f(x)µ(dx).

This enables the following characterization between Markov and transfer operators. For
finite measures, this has been already shown in [23, Theorem 2.1].

Theorem 1.3.5. A operator P : L1(µ)→ L1(µ) is a transfer operator if and only if P is a
Markov operator.

Proof. Let P be a transfer operator and f ∈ L1(µ) with f ≥ 0. Then, f̃ := f
‖f‖1

is a
probability density. Thus, we have from (1.15)

0 ≤ Pf̃ [X1 ∈ A] =
∫
A

(P f̃)(x)µ(dx)
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for any A ∈ Σ, and thus Pf ≥ 0 µ-almost surely by Proposition 1.1.6. Further, we have

1 = Pf̃ [X1 ∈ E] =
∫
E

(P f̃)(x)µ(dx)

and therefore ∫
E

f(x)µ(dx) = ‖f‖1 =
∫
E

(Pf)(x)µ(dx).

Thus, P is indeed a Markov operator.
If P is now given as a Markov operator, we are given a sub transition kernel p by

Proposition 1.3.3 with ∫
E

p(x,A) f(x)µ(dx) =
∫
A

Pf(x)µ(dx)

for all f ∈ L1(µ). Since (E,Σ, µ) is σ-additive, we find a family of sets (Ci)i∈N with

µ(Ci) <∞ and
⋃
i∈N

Ci = E.

We then get for A ∈ Σ and Dn := A ∩
⋃n
i=1 Ci∫

A

p(x,E)µ(dx) (∗)= lim
n→∞

∫
E

(P1Dn) (x)µ(dx)

(iii)= lim
n→∞

∫
E

1Dn(x)µ(dx)

=
∫
E

1A(x)µ(dx)

=
∫
A

1E(x)µ(dx),

where we have used Corollary (1.3.4) in (∗). Thus, by Proposition 1.1.5 we obtain that p is a
transition kernel.

A transfer operator propagates probability densities of a process. In contrast, sub Markov
operators map probability densities only to integrable functions where the integral over the
state space E might be less then 1. However, any sub Markov operator can be associated
with a transfer operator in the following way.

Corollary 1.3.6. For any sub Markov operator P with

||Pf ||1 ≥ γ||f ||1

for all f ∈ L1(µ) and a fixed γ ∈ (0, 1] exists a transfer operator T and a function g : E → (0, 1]
with

Pf = T (f · g)

for all f ∈ L1(µ).

Proof. If P is a sub Markov operator, then we find with the help of Proposition 1.3.3 a sub
transition kernel p with ∫

E

p(x,A) f(x)µ(dx) =
∫
A

Pf(x)µ(dx).
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Then, for A ∈ Σ we obtain∫
A

p(x,E)µ(dx) (∗)= lim
n→∞

∫
E

(P1Dn) (x)µ(dx)

≥ lim
n→∞

γ

∫
E

1Dn(x)µ(dx)

= γ

∫
E

1A(x)µ(dx)

= γ

∫
A

1E(x)µ(dx),

where (∗) follows from Corollary 1.3.4 and thus p(x,E) ≥ γ µ-almost surely by Proposi-
tion 1.1.6. Define α(x) := 1

p(x,E) ≤
1
γ . Then, for f ∈ L1(µ) we have f · α ∈ L1(µ) and we

can define for f ∈ L1(µ) the operator

T f := P (f · α),

which satisfies ∫
E

p̃(x,A) f(x)µ(dx) =
∫
A

T f(x)µ(dx)

for the transition kernel p̃(x,A) = p(x,A)
p(x,E) . Thus, T is a transfer operator that shows together

with g(x) = p(x,E) the stated property.

Koopman Operators
In the following, we give a characterization of adjoint transfer operators, which is again
independent of a transition kernel.

If we denote with

M = {f : E → R+ ∪ {∞} | f measurable}

the set of non-negative measurable functions and denote by p a kernel, one can define

V f(x) :=
∫
E

f(y) p(x, dy) (1.23)

for f ∈ M . For the operator in Equation (1.17) we needed µ-compatibility to guarantee
existence. In this situation, we do not need any relation between p and µ, because µ does
not appear anywhere, and functions in M are not equivalence classes6. There is a very neat
characterization for operators in this general form7.

Proposition 1.3.7 ([46, Proposition 1.3]). For a linear map V : M → M exists a kernel p
such that Equation (1.23) holds if and only if for every increasing sequence (fn) of functions in
M one has

V ( lim
n→∞

fn) = lim
n→∞

V fn. (1.24)

6For the operator in Equation (1.17) the measure µ is hidden in the space L∞(µ), on which the
operator is defined.

7 In [46] the reader is left to find the proof of Proposition 1.3.7. We provide it here for completeness.
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Proof. If V is defined as in Equation (1.23), then the monotone convergence theorem implies
Equation (1.24).

If, on the other hand, V is an operator witch fulfills Equation (1.24), then one can define
p(x,A) := V 1A(x). Then from the linearity we have p(x, ∅) = V 0 = 0 and for a sequence of
pairwise disjoint sets Ai ∈ Σ we have

p(x,
⋃
i∈N

Ai) = V
∑
i∈N

1Ai
(1.24)=

∑
i∈N

V 1Ai =
∑
i∈N

p(x,Ai),

thus p is a measure, and if f ∈M we get from Proposition 1.1.9 a sequence (fn) of simple
functions with fn ↑ f , and obtain

V f(x) = lim
n→∞

V fn(x) = lim
n→∞

∫
fn(y) p(x, dy) =

∫
f(y) p(x, dy),

where we have used the monotonic convergence theorem in the last step.

The above proposition gives rise to the question whether a similar characterization is
possible, when M is replaced by L∞(µ). It turns out that such a characterization exists:

Definition 1.3.8. We call a linear operator

U : L∞(µ)→ L∞(µ)

a generalized Koopman operator if it fulfills

(K1) Uf ≥ 0 for f ≥ 0, f ∈ L∞(µ)

(K2) U1 = 1

and Property (K3) which is that for any sequence of disjoint sets (Ai)i∈N ⊂ Σ we get for
Bn :=

⋃n
i=1Ai and B :=

⋃
i∈NAi that

U1Bn ↑ U1B

holds.

The name generalized Koopman operator is chosen, because the definition generalizes
the Koopman operator definied in [34]. We can now identify the class of adjoint transfer
operators.

Theorem 1.3.9. A operator U : L∞(µ) → L∞(µ) is a generalized Koopman operator if
and only if U is the adjoint operator from a transfer operator.

Proof. If U is the adjoint operator from a transfer operator, then the operator is of the form
as in Equation (1.17) for some transition kernel p. It follows directly that U fulfills condition
(K1) and (K2). Property (K3) follows from the monotonic convergence theorem. Thus U is
a generalized Koopman operator.

We now show that any generalized Koopman operator is the adjoint operator from a
transfer operator. Thus, let us given a generalized Koopman operator U . By [40, Theorem 1
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on page 29], it follows that U has an adjoint operator T that satisfies Equation (1.18). It
remains to show that T is a transfer operator. First, for f ≥ 0 we have for any A ∈ Σ∫

A

T f(x)µ(dx) = 〈1A, T f〉µ = 〈U1A, f〉µ ≥ 0

and thus T f ≥ 0 by Proposition 1.1.6. In addition, we have∫
E

T f(x)µ(dx) = 〈1, T f〉µ = 〈U1, f〉µ = 〈1, f〉µ =
∫
E

f(x)µ(dx).

Thus, T is a Markov operator and therefore by Theorem 1.3.5 a transfer operator.

This theorem shows that one can replace Property (K3) by the property that for fn, f ∈
L∞(µ), with fn, f ≥ 0 and fn → f it always follows limn→∞ Ufn = Uf .

Brown-Markov Operators
In this section, we will show that Brown-Markov operators characterize the class of op-
erators that are adjoint to a transfer operator with an invariant measure. Although the
Definition 1.3.1 of Markov operators is used frequently [48, 34, 1, 2, 32], it is not used
consistently in the literature. One definition of the Markov operator can be found in [10],
introduced in 1966 by James Russel Brown as follows.

Definition 1.3.10. A linear operator P : L∞(µ)→ L∞(µ) satisfying

(I) Pf ≥ 0 for all f ≥ 0, f ∈ L∞(µ)

(II) ||Pf ||1 = ||f ||1 for all f ≥ 0, f ∈ L∞(µ) ∩ L1(µ)

(III) P1 = 1

is called a Brown-Markov operator.

The name Brown-Markov operator is chosen, because the definition has been introduced
by Brown and at the first glance, this operator looks like a good mix between a Markov
operator and an adjoint Markov operator. Its true nature will be revealed at the end of this
section.

To characterize Brown-Markov operators, we need the following definition.

Definition 1.3.11. A measure µ is called invariant measure according to a kernel p if and
only if ∫

E

p(x,B)µ(dx) = µ(B)

holds for all B ∈ Σ.

Thus, if a invariant measure is in addition a probability measure, then it is also a stationary
measure. In [10], Brown introduces for a given transition kernel p and associated invariant
measure the operator already considered in Equation (1.17)

U : L∞(µ)→ L∞(µ)

(Uf)(x) =
∫
E

f(y) p(x, dy).
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Since µ is a invariant measure, this operator is well-defined. This follows from Proposi-
tion 1.2.3, because the invariance property implies that p is µ-compatible. One can verify that
the operator from Equation (1.17) is a Brown-Markov operator if µ is a invariant measure.
This raises the question of whether the reverse is also true, i.e. whether any Brown-Markov
operator can be obtained as in Equation (1.17) where µ is invariant according to p. Brown
suggested the following answer to this question [10, Page 15]:

“In general, a [Brown-]Markov operator can not be defined in terms of a stochastic
transition function [as in Equation (1.17)].”

The note is stated without any evidence. The reason for that is that the statement is simply
not correct. This is shown by the following proposition.

Proposition 1.3.12. A Brown-Markov operator is a generalized Koopman operator.

Proof. Let us given a Brown-Markov operator P . It remains to show that for a sequence of
disjoints sets (Ai)i∈N ⊂ Σ with Bn =

⋃n
i=1Ai and B =

⋃
i∈NAi we have

P1Bn ↑ P1B .

We have for any A ∈ Σ

0 ≤
∫
A

(P (1B − 1Bn))(x)µ(dx)

(I)
≤
∫
E

(P (1B − 1Bn))(x)µ(dx)

(II)=
∫
E

1B(x)− 1Bn(x)µ(dx)→ 0

which reveals
lim
n→∞

∫
A

(P1Bn)(x)µ(dx) =
∫
A

(P1B)(x)µ(dx).

Since (P1Bn)n∈N is monotonically increasing, applying the monotonic convergence theorem
gives ∫

A

lim
n→∞

(P1Bn)(x)µ(dx) =
∫
A

(P1B)(x)µ(dx).

Thus by Proposition 1.1.5, we have

P1Bn ↑ P1B .

Thus by Theorem 1.3.9, any Brown-Markov operator can be defined in terms of a stochastic
transition function as in Equation (1.17).

In the following, we will show that the class of Brown-Markov operators is identical to the
class of operators that are adjoint to transfer operators with invariant measure. Property (II)
enables us to consider any Brown-Markov operator as a Markov operator in the following
sense.

Proposition 1.3.13. For any Brown-Markov operator P exists a Markov operator T with

Pf = T f
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for all f ∈ L1(µ) ∩ L∞(µ).

Proof. For f ∈ L1(µ), f ≥ 0 define

gn(x) := f(x) · 1{y : f(y)≤n}(x).

Then, Pgn is monotonously increasing and we can define

(T f)(x) := lim
n→∞

(Pgn)(x).

In addition, we have ∫
E

(T f)(x)µ(dx) =
∫
E

lim
n→∞

(Pgn)(x)µ(dx)

(∗)= lim
n→∞

∫
E

(Pgn)(x)µ(dx)

(II)= lim
n→∞

∫
E

gn(x)µ(dx)

(∗)=
∫
E

f(x)µ(dx) <∞

and thus T f ∈ L1(µ), where we have used the monotonic convergence theorem in (∗). Thus
for f ∈ L1 with f = f+ − f− it is well-defined to set

T f := T f+ − T f−

and T is a Markov operator.
For f ∈ L1(µ) ∩ L∞(µ) we have

lim
n→∞

∫
E

(Pf)(x)− (Pgn)(x)µ(dx) = lim
n→∞

∫
E

(f − gn)(x)µ(dx) = 0

and thus for an appropriate subsequence8 we get

(Pf)(x) = lim
k→∞

(Pgnk)(x) = (T f)(x).

In the case where µ is invariant, it is possible to find a reversed process in the following
sense. This result has been known for finite measures [29, 23] and is now extended to
σ-finite measures.

Proposition 1.3.14. For any transition kernel p and associated invariant measure µ exists a
µ-compatible transition kernel p̃ with∫

A

p(x,B)µ(dx) =
∫
B

p̃(x,A)µ(dx) (1.25)

for all A,B ∈ Σ. We call p the reverse of p̃ and vice versa.

8Note that in general from ||Pf −Pfn||1 → 0 it does not follow that Pf → Pfn converges pointwise.
This can only be shown for a subsequent, see [3, Proposition 15.7].
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Proof. Define the operator

Pf(x) :=
∫
E

f(y) p(x, dy) (1.26)

for f ∈ L∞(µ) which is well-defined according to Proposition 1.2.3. Denote with T : L1(µ)→
L1(µ) the associated Markov operator from Proposition 1.3.13. According to Theorem 1.3.5
we can assure the existence of a µ-compatible transition kernel p̃ with∫

A

(T f)(x)µ(dx) =
∫
E

f(x) p̃(x,A)µ(dx) (1.27)

for f ∈ L1(µ). For a set B ∈ Σ define9 DB
n := B ∩

⋃n
k=1 Ck. Then, one obtains

lim
n→∞

∫
A

(P1DBn )(x)µ(dx)(1.26)= lim
n→∞

∫
A

∫
E

1DBn (x) p(x, dy)µ(dx)

(∗)=
∫
A

p(x,B)µ(dx)

and

lim
n→∞

∫
A

(P1DBn )(x)µ(dx) = lim
n→∞

∫
A

(T 1DBn )(x)µ(dx)

(1.27)= lim
n→∞

∫
E

1DBn (x) p̃(x,A)µ(dx)

(∗)=
∫
B

p̃(x,A)µ(dx)

where we have used the monotone convergence theorem in (∗).

One may note that if µ is not invariant according to p, then p cannot possess a reverse
transition kernel, because replacing A by E in Equation (1.25) yields∫

E

p(x,B)µ(dx) =
∫
B

p̃(x,E)µ(dx) = µ(B).

The following theorem together with Equation (1.7) shows that propagated probability
densities can be evaluated pointwise by an expectation value.

Proposition 1.3.15. For any transfer operator T with transition kernel p and associated
invariant measure µ exists a transition kernel p̃ with

(T f)(x) =
∫
E

f(y) p̃(x, dy)

for any f ∈ L1(µ), where p̃ is the reverse of p.

Proof. From the pre-condition we have∫
A

(T f)(x)µ(dx) =
∫
E

p(x,A) f(x)µ(dx),

9With Ci defined as in Theorem 1.3.5.
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and from Proposition 1.3.14 we know the existence of a transition kernel p̃ which is the
reverse of p. Note that this implies∫

E

1B(x) p(x,A)µ(dx) =
∫
A

∫
E

1B(y) p̃(x, dy)µ(dx)

for all A,B ∈ Σ and with the help of the monotone convergence theorem we get∫
E

f(x) p(x,A)µ(dx) =
∫
A

∫
E

f(y) p̃(x, dy)µ(dx)

for all measurable functions f ≥ 0. For any A ∈ Σ, we get∫
A

(T f)(x)µ(dx) =
∫
E

f(x) p(x,A)µ(dx)

=
∫
A

∫
E

f(y) p̃(x, dy)µ(dx)

for f ∈ L1(µ) with f ≥ 0 and by Proposition 1.1.5 we have

(T f)(x) =
∫
E

f(y) p̃(x, dy)

for f ∈ L1(µ) with f ≥ 0. Since T f ∈ L1(µ) for f ∈ L1(µ), we can split f = f+ − f− use
the linearity of T and obtain

(T f)(x) =
∫
E

f(y) p̃(x, dy)

for all f ∈ L1(µ).

In the case of the Frobenius-Perron operator T , one can state under certain conditions on
S that

(T f)(x) = f(S−1(x)) (1.28)

holds for all x ∈ E µ-almost surely [34, Corollary 3.2.1]. This can be read as follows:
Assuming all points are distributed according to f and propagated, then the probability to be
in state x is given by (T f)(x), which is identical to the probability of being in S−1(x) before,
which is given by f(S−1(x)). Denote with ((X̃n)n∈N, P̃x) the associated Markov chain from
the reversed transition kernel p̃ and with T the associated transfer operator according to the
transition kernel p, then we obtain from the previous theorem and Equation (1.7)

(T f)(x) = Ẽx[f(X̃1)].

This is the extension of Equation (1.28) to stochastic processes. Also it explains the nature
of the adjoint operator of a transfer operator, as long as µ is invariant: The adjoint transfer
operator can be viewed as the transfer operator of the reversed process.

Ultimately, we arrived at the last theorem of this chapter: The characterization of Brown-
Markov operators.
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Theorem 1.3.16. A operator P is a Brown-Markov operator if and only if P is an adjoint
operator from a transfer operator with invariant measure.

Proof. If P is the adjoint operator from a transfer operator with invariant measure µ, then it
only remains to validate (II), because the remaining properties follow from Theorem 1.3.9.
Since P is the adjoint of a transfer operator, we find a transition kernel p with

Pf(x) =
∫
E

f(y) p(x, dy)

for all f ∈ L∞(µ) ∩ L1(µ). This implies∫
E

Pf(x)µ(dx) =
∫
E

[∫
E

f(y) p(x, dy)
]
µ(dx) (∗)=

∫
E

f(x)µ(dx)

for all f ∈ L∞(µ) ∩ L1(µ), where it was used in (∗) that µ is invariant according to p. This
shows that P is indeed a Brown-Markov operator.

Let us now given a Brown-Markov operator P . It follows from Proposition 1.3.12 that P
is a generalized Koopman operator, and thus from Theorem 1.3.9 that P is the adjoint of a
transfer operator T with transition kernel p. It remains to show that µ is invariant according
to p. Denote with T̃ the associated Markov operator according to Proposition 1.3.13. Denote
with p̃ the µ-compatible transition kernel associated with T̃ from Theorem 1.3.5, i.e.∫

A

(T̃ f)(x)µ(dx) =
∫
E

f(x) p̃(x,A)µ(dx)

for all f ∈ L1(µ), A ∈ Σ. Since µ is σ-additive, we are given a sequence of disjoint sets
(Ci)i∈N with Ci ∈ Σ,

⋃
i∈N Ci = E and µ(Ci) <∞. Set Dn :=

⋃n
i=1 Ci, For A ∈ Σ we get

from the monotonic convergence theorem and Property (K3)∫
A

P1(x)µ(dx) = lim
n→∞

∫
A

P1Dn(x)µ(dx). (1.29)

Further, we get

µ(A) =
∫
A

1(x)µ(dx)

(III)=
∫
A

(P1)(x)µ(dx)

(1.29)= lim
n→∞

∫
A

(P1Dn)(x)µ(dx)

= lim
n→∞

∫
A

(T̃ 1Dn)(x)µ(dx)

= lim
n→∞

∫
E

p̃(x,A)1Dn(x)µ(dx)

=
∫
E

p̃(x,A)µ(dx)
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which shows that µ is invariant according to p̃. Thus, by Proposition 1.3.14 the transition
kernel p̃ possesses a reverse transition kernel which we denote by p̂. It will turn out that
p̂ = p and then ∫

E

p(x,B)µ(dx) =
∫
B

p̃(x,E)µ(dx) = µ(B)

proves the claim.
To see that p̂ = p holds, we define for any A ∈ Σ the set DA

n = A ∩
⋃n
i=1 Ci. Then, we

have for any A,B ∈ Σ∫
B

p̂(x,A)µ(dx) =
∫
A

p̃(x,B)µ(dx)

= lim
n→∞

∫
E

p̃(x,B)1DAn (x)µ(dx)

= lim
n→∞

∫
B

(T̃ 1DAn )(x)µ(dx)

= lim
n→∞

∫
B

(P1DAn )(x)µ(dx)

= lim
n→∞

∫
B

p(x,DA
n )µ(dx)

=
∫
B

p(x,A)µ(dx),

and by Proposition 1.1.5 we have p̂ = p.
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2Computation schemes

„Truth [. . . ] is much too complicated to allow anything
but approximations.

— John von Neumann

So far, we have revealed the essence of a transfer operator. In this chapter, we explain
how to obtain and how to extract knowledge from a Galerkin projection of the transfer
operator. We will then discuss conceptional convergence results, which have been of interest
since Ulam posed a conjecture about transfer operators in 1960. We continue by explaining
how to compute a single entry of the Galerkin projection. We offer a numerical scheme for
estimating the exact error of the computation from such an entry. We are also able to deduce
a stochastic interpretation for the exact numerical error. Finally, we introduce a Girsanov
reweighting scheme, which shows how one can make use of pre-existing trajectories in order
to receive a new Galerkin projection for a different system.

We denote with (E,Σ, µ) a probability space on any given set E, and with (Ω,A,P) a
probability space.

2.1 State of the Art

In this section, we give a brief overview of why we are interested in the eigenvalues and
eigenfunctions of the transfer operator, and how one can reduce the transfer operator from
its infinite dimensional state space to a matrix representation. Also, we will briefly discuss
some function spaces that are often used to reduce the original state space. Finally, we
describe how we model the molecule and present some of the benefits of this method.

The Clustering Method PCCA+
We call a set A ⊂ E a metastable set for a stochastic process (Xt)t∈I if

P[Xτ ∈ A | X0 ∈ A] ≈ 1,

where close to one and the time step τ has to be specified for each model individually. In
fact, the value depends on the eigenvalues of the transfer operator. In order to apply the
theorem which gives rise to the clustering methods considered here, certain conditions
are required on the transfer operator T . The definition of the transfer operator includes a
transition kernel p. We denote with ((Xn)n∈N,Pµ) the associated Markov chain and with µ
the stationary measure of p.
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Definition 2.1.1. We say that a self-adjoint transfer operator T : L2(µ) → L2(µ) fulfills
Assumption S if:

• It exhibits n eigenvalues
λn ≤ · · · ≤ λ2 < λ1 = 1

counted according to their multiplicity. The corresponding set of µ-orthonormal
eigenvectors will be denoted by {fn, . . . , f1}.

• The spectrum σ(T ) of T satisfies

σ(T ) ⊂ [a, b] ∪ {λn, . . . , λ2, 1}

for some constants a, b ∈ (−1,+1) satisfying −1 < a ≤ b < λn.

If a transfer operator fulfills assumption S, one can show the following connection between
metastable sets and eigenvalues.

Theorem 2.1.2 ([27, Theorem 1 and Theorem 2]). Consider a transfer operator T : L2(µ)→
L2(µ) according to a transition kernel p with stationary measure µ satisfying Assumption S.
Denote with ((Xn)n∈N,Pµ) the associated Markov chain. For an arbitrary decomposition of E
into sets A1, . . . , An holds:

n∑
i=1

piλi + c ≤
n∑
i=1

Pµ(X1 ∈ Ai | X0 ∈ Ai) ≤
n∑
i=1

λi

with
pi = ||Qfi||2 = 1− ||Qfi − fi||2

and

c = m(T )
(

n∑
i=1
||Qfi − fi||2

)
where

m(T ) := inf {〈T , x〉 | ||x|| = 1} ∈ (−1, 1)

and Q denotes the orthogonal projection onto {1A1 , . . . ,1An}.

This theorem reveals the connection between metastable sets and the eigenfunctions and
eigenvalues of the transfer operator. When the eigenfunctions f1, . . . , fn of the transfer
operator are given, then one may extract the metastable sets from the eigenfunctions with
the clustering method Robust Perron Cluster Analysis (PCCA+) invented by Marcus Weber
and Peter Deuflhard [14]. The idea is described as follows. If the eigenvectors are well
approximated by the indicator functions 1A1 , . . . ,1An , then the above theorem shows that
A1, . . . , An must be metastable sets. In this case, the indicator functions should be well
approximated through a linear combination of the eigenfunctions f1, . . . , fn. Since it is our
aim to find the metastable sets A1, . . . , An, this leads to the question of whether it is possible
to find functions χ1, . . . , χn in span{f1, . . . , fn} with

χi ≈ 1Ai (2.1)
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λ1 λ2 λ3 λ4 λ5 λ6

1 0.9969 0.9966 0.9912 0.9731 0.9725

Table 2.1: The largest 6 eigenvalues.

for i = 1, . . . , n. This can be achieved by questioning if it is possible to find functions
χ1, . . . , χn in span{f1, . . . , fn} with

n∑
i=1

χi(x) = 1 and χi ≥ 0 (2.2)

where χi is a linear combination of the eigenfunctions, i.e.

χi =
n∑
j=1

αijfj

or denoted in matrix notation | |
f1 . . . fn

| |



α11 . . . α1n

...
. . .

...
αn1 . . . αnn

 =

 | |
χ1 . . . χn

| |

 .

The set of possible matricies A(i, j) := αi,j that lead to a basis χ1, . . . , χn with the properties
(2.2) span a convex polytop in the space Rn×n. The algorithm PCCA+ solves to a given
convex function I : Rn×n → R an optimization problem on the polytope and returns the
matrix A which maximizes the function I. In general, the solution is not unique. In addition,
there are multiple choices for a reasonable function I. The condition (2.1) has to be decoded
in the function I. Possible choices for I can be found in [59, 47].

Example

Let us return to the example of the three rooms from Figure 1.2. Theorem 2.1.2 shows
that the eigenvalues and eigenvectors of T π1 are of interest, in order to find the metastable
sets. The largest 6 eigenvalues of the transfer operator T π1 are given in Table 2.1. There is a
spectral gap between the third and fourth eigenvalue, which indicates that we have three
metastable sets. The emergence of so many eigenvalues close to one occurs because we only
consider the transfer operator according to one timestep, thus many possible sets have a
high metastability. If we were to increase the timestep, the eigenvalues would dissociate
more clearly from another. However, the eigenfunctions do fully decode the metastable
sets. Unlike the eigenvalues, the eigenfunctions do not change for different timesteps. Thus,
approximating the eigenfunctions for a small timestep is sufficient for finding the metastable
sets for larger timesteps, but it is difficult to identify the spectral gap. The first dominant
vector is constant 1, the other non-trivial dominant eigenvectors are shown in Figure 2.1.
Figure 2.2 shows the three linear combinations χ1, χ2 and χ3 of the dominant eigenvectors,
computed with PCCA+.
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Figure 2.1: Second (left) and third (right) dominant eigenvector of T π1 .
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Figure 2.2: Cluster χ1, χ2 and χ3.
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Galerkin Method
Galerkin methods are used to convert a continuous operator problem to a discrete problem.
In our case we want to discretize the transfer operator

T : L1(µ)→ L1(µ).

One way of getting numerical access to the operator is to project it on a finite space. We
choose µ as the stationary measure of the process, because then we have for every 1 ≤ r ≤ ∞
that

T (Lr(µ)) ⊆ Lr(µ)

holds [5]. Thus, we can project T on the Hilbert space L2(µ). For functions φ1, . . . , φn ∈
L2(µ) and the unique orthogonal projection Q : L2(µ)→ D from Definition 1.1.13 where
D = span{φ1, . . . , φn} one can define the projection QT Q. The projected transfer operator
QT Q lives on an n-dimensional space and thus, there exists a matrix representationM∈
Rn×n of QT Q. We callM left matrix representation according to the basis {φ1, . . . , φn} if
for any function f ∈ D with

f =
n∑
i=1

αiψi and f̂ = (α1, . . . , αn)

it holds

(QT Q)f =
n∑
i=1

βiψi with f̂M = (β1, . . . , βn)

and we call it right matrix representation if we multiply f̂ from the right ofM to obtain the
corresponding βi. In both cases,M is called the Galerkin projection of the transfer operator
T .

Marco Sarich showed how the left matrix representation appears for the transfer operator.

Theorem 2.1.3 ([49, Theorem 1]). Let D = span{φ1, . . . , φn} ⊂ L2(µ) be an n-dimesional
space and µ denote any measure and Q : L2(µ) → D the ortoghonal projection. And let
T : L2(µ)→ L2(µ) denote a linear operator. If 〈φi,1〉µ > 0 for i = 1, . . . , n then

M = TS−1 Tij =
〈T φi, φj〉µ
〈φi,1〉µ

Sij =
〈φi, φj〉µ
〈φi,1〉µ

is a left matrix representation of QT Q to basis A = {f1, . . . , fn} with fi = φi
1

〈φi,1〉µ
.

In cases where the operator is self-adjoint, it is possible to give a right matrix representation
of QT Q to an unweighted basis, which is useful for numerical application since the weights
are known to be ill-conditioned [60].

Theorem 2.1.4. Let {φ1, . . . , φn} ⊂ L2(µ) be a basis with 〈φi,1〉µ > 0 of a subspace D, and
Q : L2(µ) → D the orthogonal projection onto D. For any self-adjoint continuous operator
T : L2(µ)→ L2(µ) we have

M = S−1T, Tij =
〈T φi, φj〉µ
〈φi,1〉µ

, Sij =
〈φi, φj〉µ
〈φi,1〉µ
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is a right matrix representation of QT Q according to the basis A = {φ1, . . . , φn}, i.e. for any

f =
n∑
i=1

αiφi, QT Qf =
n∑
i=1

βiφi

it holds
M(α1, . . . , αn)T = (β1, . . . , βn)T .

Proof. Consider the Gram matrix of {φ1, . . . , φn}

Ŝij = 〈φi, φj〉µ .

This matrix is invertible since {φ1, . . . , φn} is a basis and the orthogonal projection Q can be
represented as

Qv =
n∑

i,j=1
Ŝ−1
ij 〈v, φi〉µ φj .

This can be verified by checking 〈Qv − v, g〉µ = 0 for all g ∈ D, v ∈ L2(µ). From

S = D−1Ŝ with D = diag
(
〈φ1,1〉µ , . . . , 〈φn,1〉µ

)
we obtain

S−1 = Ŝ−1D and, therefore, Ŝ−1
ij = S−1

ij

1
〈φj ,1〉µ

= S−1
ji

1
〈φi,1〉µ

,

in the last step it was used that Ŝ−1 is symmetric since Ŝ is symmetric. This implies

Qv =
n∑

i,j=1
S−1
ji 〈v, φi〉µ

φj
〈φi, 1〉µ

.

Therefore,

QT Qφk = QT φk

=
n∑

i,j=1
S−1
ji 〈T φk, φi〉µ

φj
〈φi, 1〉µ

=
n∑

i,j=1
S−1
ji

〈φk, T φi〉µ
〈φi,1〉µ

φj

=
n∑
j=1

(
n∑
i=1

S−1
ji Tik

)
φj

=
n∑
j=1

(
S−1T

)
kj
φj .
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Choosing the Function Space
In order to obtain meaningful results with PCCA+, the functions φi should be chosen such
that they can be correlated to a set of conformations. This is fulfilled if

φi ≥ 0 and
n∑
i=1

φi(x) = 1. (2.3)

To see this, let us recall how PCCA+ computes the cluster. Assume we have a state space
discretization on the finite-dimensional space spanned by the functions {φ1, . . . , φn}. Then,
we can compute the matrix representationM. The eigenfunctions f1, . . . , fs of the first s
dominant eigenvalues near 1 from the projected transfer operator correspond to eigenvectors
βi = (βi1, . . . , βin) ofM in the sense that

n∑
k=1

βik φk = fi

holds for i = 1, . . . , s. The clustering method PCCA+ works on the representation vectors βi

of the eigenfunctions fi, i.e. it computes a matrix A = [αij ] and vectors χ1, . . . , χs where
χi = (χi1, . . . , χin) with

s∑
i=1

χil = 1 and χil ≥ 0

for all i, l ≥ 0 and

χi =
s∑
l=1

αli β
l.

The vector χi = (χi1, . . . , χin) is associated with the function

χiφ :=
n∑
k=1

χik φk.

We have χiφ(x) ≥ 0 and
∑s
i=1 χ

i
φ(x) = 1 from (2.3), the latter can be seen by

s∑
i=1

χiφ(x) =
s∑
i=1

n∑
k=1

χik φk(x)

=
n∑
k=1

φk(x)
(

s∑
i=1

χik

)

=
n∑
k=1

φk(x)

= 1.

Thus, after projecting the transfer operator on φ1, . . . , φn, the metastable sets Ai can be
identified by Ai = {x ∈ E | χiφ(x) ≈ 1} for i = 1, . . . , s.

Another direct consequence of (2.3) is that the matricies T and S are both transition
matrices, i.e.

∑
j Tij =

∑
j Si,j = 1 and Tij , Sij ≥ 0. Thus, they both give rise to two

different Markov chains on a finite state space. However the Galerkin projection M is
generally not a transition matrix.
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In the following, three particularly interesting choices of functions that fulfill these
conditions are considered in more detail.

Indicator Functions

Let (Ai)i=1,...,n be a partition of E, i.e.

n⋃
i=1

Ai = E and Ai ∩Aj = ∅

then consider the family of indicator functions

φi(x) = 1Ai(x).

In this case, S is the identity matrix and we haveM = T , thus the Galerkin projection of the
transfer operator is a transition matrix of a Markov chain and therefore often referred to
as the Markov State Model [8]. In this case, the entries of the Galerkin projection have a
stochastic interpretation. This can be derived from

〈
T 1Ai ,1Aj

〉
µ

=
∫
Aj

(T 1Ai)(x)µ(dx) (1.14)=
∫
Ai

p(x,Aj)µ(dx) (1.8)= Pµ[X1 ∈ Aj , X0 ∈ Ai]

and
〈1Ai ,1〉µ =

∫
E

1Ai(x)µ(dx) = µ(Ai) = Pµ[X0 ∈ Ai]

where ((Xn)n∈N,Pµ) is the associated Markov chain of the transfer operator. Combined, the
two equations produce

Tij =

〈
T 1Ai ,1Aj

〉
µ

〈1Ai ,1〉µ
= Pµ[X1 ∈ Aj | X0 ∈ Ai]. (2.4)

If the dimension d of the state space E grows, the size N of an equidistant partition of
sets will explode with d and leads to the curse of dimension. A possible way to slow down
the curse of dimension is to use sparse grids [62, 21] as used by Junge and Koltai [28] to
discretize the transfer operator for a deterministic system.

Radial Basis Functions

In [58, 59, 47, 11] a meshless discretization of the transfer operator is presented. It uses the
functions

φi(x) = 1
Z(x) exp(−αd2(x, xi))

with
Z(x) =

∑
j

exp(−αd2(x, xj)),

and the function d is a function that measures a distance between points; this distance could
either be certain internal chemical coordinates of the molecule or the euclidean distance in
Rd. While this does not lead to a curse of dimension, it does leads to the problem of how to
place the points (xi) properly.
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Committor Functions

In [54] another meshless discretization of the transfer operator is presented. One starts
with some disjoint sets (Ci)i=1,...,n. Unlike the indicator functions, the sets (Ci)i=1,...,n

do not form a partition. These sets are called core sets and each core set gives rise to a
committor function (qi)i=1,...,n. The committor function qi(x) at point x ∈ E is defined as
the probability that a process starting in x will visit Ci before it visits any other core set. It
is possible to compute the Galerkin projection without explicitly computing the committor
functions. In addition, it has been shown that eigenfunctions and eigenvalues of the transfer
operator are extremely well approximated by the committor functions if the core sets are
placed close to metastable sets.

Similarly to the problem for radial basis functions, this approach has the advantage that it
does not lead to a curse of dimension, but it is unclear where to place the core sets. As a
method for identifying where to place the core sets, in [49] a high temperature sampling
procedure is proposed to give a first indication for the metastable sets, since the core sets
should be placed near to the metastable sets.

If one is interested in an approximation of the eigenfunctions of the transfer operator,
then the committor functions φi must be computed explicitly. This is because the eigenvector
of the Galerkin approximation only reveals βj and not the eigenfunction fj =

∑n
k=1 β

i
kφk

of the projected transfer operator. Also, if one wants to get from χi to χiφ =
∑n
k=1 χ

i
kφk,

then also the computation of the committor functions is necessary. Unfortunately, efficient
explicit computation of the committor function is not feasible in high dimensions. This is a
disadvantage for computing metastable sets with PCCA+ by committor functions, because
in contrast to indicator functions or radial basis functions, it is a barrier to move from χi to
χiφ =

∑n
k=1 χ

i
kφk.

Molecule Model
We model our molecule in state space with a stochastic differential equation. Possible state
spaces are either the configuration space R3d for molecules with d atoms, or [0, 2π]d for
molecules with d torsion angles. We assume that a potential V is given which describes the
energy landscape of the state space. We obtain trajectories of the molecule’s state space from
a stochastic differential equation1

dXt = −∇V (Xt) dt+ σ dWt, X0 ∼ µ (2.5)

where σ =
√

2β−1 with temperature β−1 = kBT , where kB denotes the Boltzmann’s
constant and T the absolute temperature.

For each probability measure µ as an initial condition, the solution of the stochastic
differential equation is a Markov process (Xt)t≥0, see [4, Proposition 42.7] and [42, Theorem
7.1.2]. Further, for any lag time τ we get a discretized Markov chain (Xnτ )n∈N with a
transition kernel

p(x,A) := pτ (x,A).

1A good introduction to the theory of stochastic differential equations can be found in [42].
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There is a fundamental advantage to model the molecule as a Markov process2. We are
interested in the clusters of the molecule and the necessary information is decoded in
the eigenfunctions of the transfer operator Tτn. But any eigenfunction of Tτ is also an
eigenfunction of Tτn = T nτ ; thus we only need to compute trajectories for a very short
lag time and approximate eigenfunctions of Tτ . Another advantage is that the process
obtained through Equation (2.5) is always reversible [43, Proposition 4.5]. This has a direct
consequence for the Galerkin projection. As seen in the last chapter, reversibility of the
process is equivalent to the self-adjointness of the transfer operator T . Since the orthogonal
projection Q is also self-adjoint, the immediate consequence is that the Galerkin projection
itself is also self-adjoint

(QT Q)∗ = Q∗T ∗Q∗ = QT Q.

Thus, the eigenvalues of the Galerkin projection are all real-valued and contained within
[−1, 1] since

||QT Q||2 ≤ 1

and a basis of orthogonal eigenvectors exists. However, it might be worth noting that the
Galerkin projection Pτ for some fixed τ on finite sets A1, . . . , An of Xτ does not provide the
Galerkin projection P2τ of X2τ . This is because

P 2
τ 6= P2τ

in general. A counterexample can be found in [40, Example 3.2.2.].
If V is smooth, and fulfills

lim
|x|→∞

V (x) =∞

and
e−βV (x) ∈ L1(Rd)

for all β > 0, then the process is also ergodic and the unique invariant distribution is the
Gibbs distribution which is given by

µ(x) = 1
Z
e−βV (x)

where the normalization factor Z is the partition function

Z =
∫
Rd
e−βV (x) dx,

see [43, Proposition 4,2]. It is often useful to know the (unnormalized) Gibbs distribution
analytically, in order to use Monte Carlo methods to compute stationary distributed points.
In cases where the process is ergodic, a very recent result [38] shows that the associated
restricted transfer operator T : L2(µ)→ L2(µ) posses a spectral gap if there exists a p > 2
with

sup
||f ||2=1

||T f ||p <∞.

2There are other reasonable models for a molecule which are not Markov, see [40, Section 2.3.2].
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2.2 Basic Computation

We have seen that in order to find metastable sets of a dynamical system, we need to compute
the eigenfunctions of the transfer operator. This raises the question whether a Galerkin
projection of the transfer operator is a good source for the eigenvectors. This question
was first posed in 1960 and is known as Ulam’s Conjecture. We will present two standard
methods for computing the Galerkin projection, and we will show that one can actually find
a stochastic interpretation for the exact error of our Galerkin projection. Further, we will
reveal some unexpected properties of reversible processes.

In the following we denote with

T : L1(µ)→ L1(µ)

a self-adjoint transfer operator, i.e. it is associated to a reversible transition kernel p, and
with µ a stationary measure of p. We denote with ((Xn)n∈N,Px) the associated Markov chain
and we denote with lag time τ the time which is required to move from X0 to X1.

Ulam’s Conjecture
Rechard [45] drew attention to the operator for the deterministic case in 1956, by following
the introduction of the generalized transfer operator in 1954 by Hopf [23]. This work was
acknowledged by Ulam in 1960, when he dedicated three pages of his book “A collection of
mathematical problems” [57, page 73-75] to the transfer operator. It was in this book that
he posed the following conjecture, which is still not completely resolved.

Consider the Lebesuge measure space ([0, 1],B([0, 1]), λ) together with a transfer operator
H : L1(λ) → L1(λ). Ulam then considered an equidistant partition of [0, 1] into n sets
An1 , . . . , A

n
k(n), and defined for each n the matrix A(n) = [anij ] by

anij =

〈
H1An

i
,1An

j

〉
λ〈

1An
i
,1E

〉
λ

.

The matrix A(n) is a Markov chain because by the Markov operator property we have〈
H1An

i
,1E

〉
λ

= ||H1An
i
||1 = ||1An

i
||1 =

〈
1An

i
,1E

〉
λ
,

and hence ∑
j=1

anij =
〈
H1An

i
,1E

〉
λ〈

1An
i
,1E

〉
λ

= 1.

Thus, the matrix inherits at least one left normalized invariant vector, which we denote by
πn = (πn1 , . . . , πnk(n)). We are now ready to pose Ulam’s conjecture:
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Assume H has a non-negative, unique invariant function µ ∈ L1([0, 1]), does

k(n)∑
i=1

πni 1Ani → µ

then converge in L1(λ) for n→∞ ?

As soon as 16 years later, in 1976, the author Li [15] was able to show that for the
deterministic case where the dynamical system is described by a map S, Ulam’s conjecture is
fulfilled if S is piecewise twice continuously differentiable and inf |S′(x)| > 2.

For our purpose, we are interested in a different matrix T (n) = [Tnij ] with

Tnij =

〈
T 1An

i
,1An

j

〉
µ〈

1An
i
,1E

〉
µ

,

where µ is the unique Gibbs distribution. This matrix coincides with our Galerkin projection
on indicator functions. As Theorem 2.1.2 showed, we are interested in the eigenvalues
and eigenfuctions of the µ-weighted transfer operator in order to identify metastable sets.
Fortunately, there are a variety of advantages to consider the µ weighted Galerkin projection.
First, one only needs points distributed according to µ in order to compute the Galerkin
projection. Computing equal distributed points according to the Lebesgue measure λ would
lead directly to curse of dimension and could not be applied for molecules with many atoms.
Secondly, the weighted Galerkin projection inherits beneficial properties of the self-adjoint
transfer operator, like a real valued spectrum and real eigenvectors. Thirdly, the eigenvectors
and eigenvalues of T (n) converge to the eigenfunctions and eigenvalues of T in the || · ||2
norm if the corresponding eigenvalues are isolated [50, Corollary 5.4].

Computing the Galerkin Projection
When we have a Galerkin projection on a finite dimensional space spanned by a basis
{φ1, . . . , φn} with the property stated in (2.3), we have to compute estimates of the matrices
T = [Tij ] and S = [Sij ] with

Tij =
〈T φi, φj〉µ
〈φi,1〉µ

, Sij =
〈φi, φj〉µ
〈φi,1〉µ

where each entry represents a high-dimensional integral that needs to be solved. It is known
that standard approximation techniques such as the trapezian rule fail to compute such an
integral in high dimensions, because an accuracy of ε would require O( 1

εd
) computations

and grows exponentially with dimension d. However, it is possible to break the curse of
dimension in the following sense. To explain the procedure in simplified notation, we
consider the general problem of approximating an integral of the form

I :=
∫
E

φ(x)µ(dx), (2.6)
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where µ is a probability distribution. The term Tij can be written in this form by replacing φ
with

φij(x) = T φi(x) · φj(x) · 1
〈φi,1〉µ

.

If we have Y, Y1, . . . , YN : Ω → E independent random variables which are distributed
according to µ, then one can consider the random variable

Î := 1
N

N∑
i=1

φ(Yi).

Because of

E[Î] = E

[
1
N

N∑
i=1

φ(Yi)
]

= 1
N

N∑
i=1

E [φ(Yi)] = 1
N

N∑
i=1

E [φ(Y )] = E [φ(Y )] = I,

we obtain
VAR[Î] = ||I − Î||2L2(P).

Since the Yi are independent, one can compute the variance as

VAR[Î] = 1
N2

N∑
i=1

VAR[φ(Yi)] = 1
N

VAR[φ(Y )]

and thus

||I − Î||L2(P) =
√

VAR[φ(Y )]√
N

.

Therefore, Î converges to I in O( 1√
N

) in the || · ||L2(P) norm and is independent of the
dimension. However, one should be aware that for higher dimensions the preceding factor
VAR[φ(Y )] may increase, and obtaining independent samples from a given distribution is
generally a difficult task.

We will now start discussing two major approaches for obtaining a Markov State Model.
The first approach is to compute a single long-term trajectory. The idea is that we first
approximate the term

Cij = 〈T φi, φj〉µ = 〈φi,Uφj〉µ
(1.7)=

∫
E

φi(x)Ex[φj(X1)]µ(dx).

Thus we need Y1, . . . , YN µ-distributed random variables and can estimate Cij by

1
N

N∑
k=1

φi(Yk)EYk [φj(X1)].

Then, for each k we have to compute mk trajectories starting at Yk of length τ and ending in
Y k1 , . . . Y

k
mk

; the final approximation is then given by

C̃ij = 1
N

N∑
k=1

φi(Yk)
(

1
mk

mk∑
l=1

φj(Y kl )
)
.

The computation of 〈
T 1Ai ,1Aj

〉
µ

〈1Ai ,1E〉µ
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can be obtained after normalizing the matrix C̃ row-wise

T̃Lij := C̃ij∑N
j=1 C̃ij

. (2.7)

Analogously we can compute S̃Lij . Setting mk = 1 for each k allows us to approximate
the terms of one single long-term trajectory. Summarizing, we end up with the following
scheme.

Long-Term Trajectories To gain an approximation of T̃L, we compute a long trajectory
(yi)i=0,...,r−1 for the dynamics (2.5) by performing r timesteps of size dt using the
Euler-Maruyama discretization

yi+1 = yi −∇V (yi) dt+ σ
√
dt ηi

of (2.5), where ηi = (η1
i , . . . , η

d
i ) are independent d-dimensional random variables

distributed according to the standard normal distribution. This trajectory is divided
into pieces of length l yielding M subtrajectories (yki )i=1,...,l := (ylk, . . . , yl(k+1)−1) for
k = 0, . . . ,M − 1. If the trajectory is long enough, it can be assumed that the points
y0

1 , . . . , y
M−1
1 are distributed according to µ and we can estimate T̃L by

Ĉij =
M−1∑
k=0

φi(yk1 )φj(ykl )

and

T̃Lij ≈
Ĉij∑n
j=1 Ĉij

.

To compute an estimation of S̃ we only need y0
1 , . . . , y

M−1
1 . It is good practice to take

only every m-th point of the trajectory, to make them at least seem to be independent.
Then we can estimate S̃ by

D̃ij =
M−1∑
k=0

φi(yk1 )φj(yk1 )

and

S̃Lij ≈
D̃ij∑n
j=1 D̃ij

.

In accordance with the explanation above, this will converge in order O( 1√
M

) in the
|| · ||L2(P) norm to the exact value. However, long-term trajectories are unfeasible in high
dimensions. Thus, a different method is needed. We follow the idea of vertical and horizontal
sampling which was initially developed for a Galerkin projection onto radial basis functions
[58, 47, 59] but can analogously be used for arbitrary functions. The idea is to rewrite

〈T φi, φj〉µ
〈φi,1〉µ

=
〈φi, T φj〉µ
〈φi,1〉µ

= 〈hi, T φj〉µ
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with

hi(x) := φi(x)
〈φi,1〉µ

.

If we define the measure µi(A) :=
∫
A
hi(x)µ(dx), then we are faced with the task of

computing

Tij =
∫
E

Ex[φj(X1)]µi(dx).

Thus, we once again need random variables Y1, . . . , YN , but this time distributed according
to µi and we can estimate Tij by

T̃Sij := 1
N

N∑
k=1

EYk [φj(X1)]. (2.8)

Then, for each k we have to compute mk trajectories starting at Yk of length τ and ending in
Y k1 , . . . Y

k
mk

, the final approximation is then given by

1
N

N∑
k=1

1
mk

mk∑
l=1

φj(Y kl ).

In this case, a normalization is not needed. The computation of µi distributed points can be
obtained via the Metropolis Monte Carlo Method, which is also feasible in high dimensions.
A good overview of Monte Carlo methods, including the Metropolis method, can be found
in [35]. We use the Metropolis methods with Gaussian centered proposal density on the
current point, which we will explain in the following. We assume that a probability measure
ν with a Lebesgue density fν that is known up to a multiplicative constant, i.e.

ν(A) =
∫
A

fν(x)
Z

dx

with A ∈ Σ and Z =
∫
E
fν(x), dx.

Compute ν distributed points First choose any random xi1. We describe now how to pick
xim+1 if xim is given. Consider a proposal state x′ which is selected according to the
normal distribution N (xim, r2) centered on xim with standard derivation r which is
chosen appropriate. To decide whether to accept the new state, we compute the
quantity

a = fν(x′)
fν(xim) .

If a ≥ 1, then the new state is accepted, i.e. xim+1 := x′. If a < 1, then the new state
is accepted with probability a, and otherwise we have xim+1 := xim.

This tool leads to the following approximation scheme for short trajectories.

Short-Term Trajectories To gain an approximation of T̃S , we compute for each set Ai
points xi1, . . . , x

i
N that are distributed according to µi, where xi0 is taken randomly

from Ai. This can be obtained for our molecule model using the scheme explained
above with

fν(x) = φi(x) e−βV (x).
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Figure 2.3: Potential (left) and trajectory (right).
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Figure 2.4: Vector π is green and vector v is blue. The error left is e ≈ 0.0195 and
right e ≈ 0.1889.

For each point xil we compute mi trajectories again, using a Euler-Maruyama dis-
cretization and saving the endpoints yi,l1 , . . . , y

i,l
mi . The entry T̃Sij is then estimated

as

T̃Sij ≈
1
N

N∑
l=1

1
mi

mi∑
k=1

φj(yi,lk ).

Analogous, the entry S̃Sij can be estimated as

S̃Sij ≈
1
N

N∑
k=1

φj(xik)

We will now discuss both computation schemes on an elementary example. Consider
the double well potential V (x) = (x − 2)2(x + 2)2 as shown in Figure 2.3 with β = 0.5
according to our model given by Equation (2.5). We consider in the following the in
magnitude closest three eigenvalues to 1, i.e |λ3| < |λ2| < λ1 = 1. We compute a Galerkin
projection of our model using trajectories of length τ = 200 · dt, with timestep dt = 0.001,
and with 20 equidistant sets (Ai)i=1,...,20 partitioning the interval [−3, 3]. The vector π =
(µ(A1), . . . , µ(A20)) can be computed using the trapeze rule. Since the vector π should
be equal to the normalized left eigenvalue v to eigenvalue 1, we will compare the error
e = ||π − v|| in the standard euclidean norm. Figure 2.4 shows two examples of the impact
of the size of e. We conducted an experiment by computing 100 Galerkin projections
for long and short-term trajectories. The results are shown in Table 2.2 and Table 2.3
respectively. For each Galerkin projection, the values λ2, λ3 and e have been evaluated.
The terms E[λ2],E[λ3] and E[e] describe the mean value of the 100 computations, and
σ(λ2), σ(λ3) and σ(e) describe the standard variance of the 100 computations. We conducted
the experiment with 5, 000 trajectories and repeated the experiment with an increasing
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trajectories E[λ2] σ(λ2) E[λ3] σ(λ3) E[e] σ(e)

50, 000 0.9995 1, 3 · 10−4 0.0632 + 0.0065i 0.907 0.0931 0.0681

500, 000 0.9995 3.7 · 10−5 0.0598 0.012 0.0269 0.02

Table 2.2: Long-term trajectory computation.

trajectories E[λ2] σ(λ2) E[λ3] σ(λ3) E[e] σ(e)

5, 000 0.9996 4, 0 · 10−4 0.0398 + 0.0046i 0.0594 0.2383 0.0935

50, 000 0.9995 1, 3 · 10−4 0.0593 0.0026 0.1542 0.0364

500, 000 0.9995 5, 6 · 10−5 0.0592 7, 3 · 104 0.1216 0.0096

5, 000, 000 0.9995 1, 5 · 10−5 0.0591 2, 2104 0.1152 0.0012

Table 2.3: Short-term trajectories computation.

number of trajectories up to 5, 000, 000, each of length τ = 200 · dt with timestep dt = 0.001.
Thus, the number of total steps is between 200 · 5, 000 = 107 and 200 · 5, 000, 000 = 109. We
used a standard derivation r = 0.0345 for the Metropolis method. A trajectory computed with
the Euler-Maruyama discretization of this model can be found in Figure 2.3. In Figure 2.5,
the distribution of M = 500, 000 starting points is shown for the long-term trajectory, i.e the
points (yk1 )k=0,...,M−1, and for the short-term trajectories, i.e. the points (xij)i=1,...,n,j=1,...,N

with n · N = M . The variance of the experiment is already very small, which indicates
convergence. Nonetheless, 107 steps is a lot of computation for a one-dimensional problem.
Each step is saved as a double and therefore consumes 64 bit. Thus, 107 steps need 80 MB
storage space, which is certainly far too much data for a simple one dimensional problem.
However, we cannot compute a Markov State Model of a long-term trajectory with less then
107 steps, because in general that would result in no jumps between the two wells. For the
calculation of 109 steps, already 8 GB storage space is needed. For the short-term trajectory
estimation, we can get better approximations of the eigenvalues, using less data as shown in
Table 2.3. On the other hand, the computation of π seems to get better if the sampling is
concentrated on the metastable sets. However, the computation of the weights is known to
be ill-conditioned [36, 12] and there are better methods available to compute the weights
[60].
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Figure 2.5: Histogram of starting points of long-term (left) and short-term (right)
scheme.

Computing the Error
We are again provided with a basis {φ1, . . . , φn} of measurable functions with the property
stated in (2.3), and with the goal to compute estimates of the matrices T = [Tij ] and
S = [Sij ] with

Tij =
〈T φi, φj〉µ
〈φi,1〉µ

, Sij =
〈φi, φj〉µ
〈φi,1〉µ

.

In the previous section, we have introduced two major concepts of computing the Galerkin
projection: The long-term trajectory approach by approximating T̃L from Equation (2.7)
and the short-term trajectory approach by approximating T̃S from Equation (2.8). We will
now derive for both quantities the exact error in dependency of the number N of trajectories
used.

Error for Long-Term Trajectories

We start with the long-term trajectory approach. First of all, the term T̃L can be rewritten as

T̃Lij = 1
N

N∑
k=1

φij(Yk)

with Y1, . . . , YN distributed according to µ and

φij(x) = T φi(x) · φj(x) · 1
〈φi,1〉µ

.

The error between the entries T̃Lij and Tij is exactly given by

||Tij − T̃Lij ||L2(P) =
√

VAR(φij(Y ))
√
N

,

where Y is distributed according to µ, this follows from the last section, as explained for
the approximation of the term in (2.6). Thus, if we could compute

√
VAR(φij(Y )), we

could exactly compute the error of the Galerkin approximation, depending on the number
of points N . Surprisingly, we can actually compute this term analytically. To do so, we first
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limit ourselves to the simple case of a Galerkin projection onto indicator functions according
to a partition (Ai)i=1,...,n of E. The term φij is then given as

φij(x) = T 1Ai(x) · 1Aj (x) · 1
µ(Ai)

.

We have
VAR[φij(Y )] = E[φ2

ij(Y )]− E[φij(Y )]2

and
E[φij(Y )] (∗)=

∫
E

φij(x)µ(dx) (∗∗)= Pµ[X1 ∈ Aj | X0 ∈ Ai]

where (∗) follows from (1.3) and (∗∗) has been shown in (2.4). The other term can be
computed as follows

E[φ2
ij(Y )] (∗)= 1

µ(Ai)2

∫
T 1Ai(x) ·

(
T 1Ai · 1Aj

)
(x)µ(dx)

(∗∗)= 1
µ(Ai)2

∫
1Ai(x) ·

(
U
(
T 1Ai · 1Aj

))
(x)µ(dx)

= 1
µ(Ai)2

∫
Ai

∫
Aj

T 1Ai(y) p(x, dy)µ(dx),

where (∗) follows from Equation (1.3) and (∗∗) follows from Euqation (1.18). Since T is

associated with a reversible process, we have T 1Aj (y) (1.22)= U1Aj (y) = p(y,Aj) and the
variance simplifies to

E[φ2
ij(Y )] = 1

µ(Ai)2

∫
Ai

∫
Aj

p(y,Ai) p(x, dy)µ(dx)

(∗)= 1
µ(Ai)2Pµ[X2 ∈ Ai, X1 ∈ Aj , X0 ∈ Ai]

= 1
µ(Ai)

Pµ[X2 ∈ Ai, X1 ∈ Aj | X0 ∈ Ai]

where (∗) follows from Definition 1.1.17. Thus, the variance for reversible processes is
exactly given by

VAR[φij(Y )] = Pµ[X2 ∈ Ai, X1 ∈ Aj | X0 ∈ Ai]
Pµ[X0 ∈ Ai]

− Pµ[X1 ∈ Aj | X0 ∈ Ai]2.

Computation of the variance is similar to the previous approximations. First of all, note
that the entries P[X1 ∈ Aj | X0 ∈ Ai] are given by the Galerkin projection itself and
P[X0 ∈ Ai] can be computed as the left eigenvector of the Galerkin projection, or with the
better conditioned method presented in [60]. Thus it remains to compute the term

Pµ[X2 ∈ Ai, X1 ∈ Aj | X0 ∈ Ai].

To do so, we write

Pµ[X2 ∈ Ai, X1 ∈ Aj | X0 ∈ Ai] = 1
µ(Ai)

∫
Ai

∫
Aj

p(y,Ai) p(x, dy)µ(dx) =
∫
E

f(x)µi(dx)
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with µi(A) = 1
µ(Ai)

∫
A
1Ai(x)µ(dx) and f(x) =

∫
Aj
p(y,Ai) p(x, dy). As a first step, we need

to compute points Y1, . . . , YN1 according to µi. Then the term is approximated by

1
N1

N1∑
l=1

f(Yl).

To compute the term f(Yl), we need points Y l1 , . . . , Y
l
N2

distributed according to p(Yl, ·).
This can be obtained by starting N2 trajectories of length τ from Yl; the endpoints are the
corresponding points. Then

f(Yl) ≈
1
N2

N2∑
k=1

1Aj (Y lk) p(Y lk , Ai).

Finally, for each k we need to approximate the term p(Y lk , Ai) =
∫
E
1Ai(x) p(Y lk , dx). For this

we require N3 points Zk1 , . . . , Z
k
N3

distributed according to p(Y lk , ·), which can be obtained
by starting N3 trajectories from Y lk of length τ and taking the endpoints. Then, the term is
approximated by

p(Y lk , Ai) ≈= 1
N3

N3∑
r=1

1Ai(Zkr ).

This leads to the following approximation of the variance.

Variance Computation In order to approximate the term VAR[φij(Y )] we assume that the
matrix T̃L has been computed together with an approximation π̃ of π. As a first step,
we need to compute points y1, . . . , yN1 distributed according to µi. For each point yl
we compute N2 trajectories with start point yl of length τ and denote the end points
with yl1, . . . , y

l
N2

. Then, for each point ylk we compute N3 trajectories with the start
point ylk of length τ and denote the end points with zk1 , . . . , z

k
N3

. The variance is then
approximated by

VAR[φij(Y )] ≈ 1
π̃i ·N1 ·N2 ·N3

( N1∑
l=1

N2∑
k=1

N3∑
r=1

1Aj (ylk)1Ai(zkr )
)
− (T̃Lij )2.

We now look at the general case where the transfer operator is projected to a subspace D
with basis of measurable functions φ1, . . . , φn ≥ 0 on E. In this scenario, we must compute
the terms

Tij =
〈T φi, φj〉µ
〈φi,1〉µ

and Sij =
〈φi, φj〉µ
〈φi,1〉µ

.

To compute the variance associated to the error of S̃Lij , we need to compute VAR[φ̂ij(Y )]
with

φ̂ij(x) = φi(x)φj(x) 1
〈φi,1〉µ

where Y is still a random variable distributed according to µ. Considering the measure

µi(A) := 1
〈φi,1〉µ

∫
A

φi(x)µ(dx),
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one directly obtains

VAR[φ̂ij(Y )] = E[φ̂2
ij(Y )]− E[φ̂ij(Y )]2

= Eµ[φ̂2
ij ]− Eµ[φ̂ij ]2

= Eµi [φi φ2
j ]Eµ[φi]−1 − Eµi [φj ]2,

where we have used Equation (1.3). In order to compute the variance associated to the error
of T̃Lij , we need the following observation. For sets A,B ∈ Σ, we have3

E[µ][1A(X0)1B(X1)] = Pµ[X0 ∈ A,X1 ∈ B] (∗)=
∫
E

1A(x)
∫
E

1B(y) p(x, dy)µ(dx)

where (∗) follows from Definition 1.1.17. For measurable functions f, g ≥ 0, we then obtain

E[µ][f(X0) g(X1)] =
∫
E

f(x)
∫
E

g(y) p(x, dy)µ(dx). (2.9)

Now, for φij(x) = T φi(x)φj(x) 1
〈φi,1〉µ

we first compute

E[φ2
ij(Y )](1.3)= 1

〈φi,1〉2µ

∫
E

(T φi(x)φj(x))2
µ(dx)

= 1
〈φi,1〉2µ

∫
E

T φi(x)
(
φ2
j · T φi

)
(x)µ(dx)

(1.18)= 1
〈φi,1〉2µ

∫
E

φi(x)
(
U
(
φ2
j · T φi

)
(x)
)
µ(dx)

= 1
〈φi,1〉2µ

∫
E

φi(x)
(∫

E

φ2
j (y) T φi(y) p(x, dy)

)
µ(dx).

Knowing that T is reversible, one obtains from Equation (1.22)

T φi(y) = Ey[φi(X1)],

leading to

E[φ2
ij(Y )] = 1

〈φi,1〉2µ

∫
E

φi(x)
∫
E

φ2
j (y)Ey[φi(X1)] p(x, dy)µ(dx).

From Equation (2.9) we obtain

E[φ2
ij(Y )] = 1

〈φi,1〉2µ
E[µ]

[
φi(X0)φ2

j (X1)EX1 [φi(X1)]
]
.

Further, according to [37, Equation (3.28) in Chapter 3], we have

EX1 [φi(X1)] = E[µ][φi(X2) | F1],

where F1 = σ(X0, X1). Thus, we obtain

E[µ][φi(X0)φ2
j (X1)EX1 [φi(X1)] = E[µ]

[
φi(X0)φ2

j (X1)E[µ][φi(X2) | F1]
]

3One may want to recall the notation made in (1.6).
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Also note that we have

E[µ][1A E[µ][φi(X2) | F1]] = E[µ][1A φi(X2)]

for any A ∈ F1; this follows directly from Definition 1.1.12. Since φi(X0)φ2
j (X1) is measur-

able according to F1, we obtain

E[µ]
[
φi(X0)φ2

j (X1)E[µ][φi(X2) | F1]
]

= E[µ]
[
φi(X0)φ2

j (X1)φi(X2)
]
.

Thus we finally get
E[φ2

ij(Y )] = Eνi [φ2
j (X1)φi(X2)]Eµ[φi]−1

with

νi(A) =
∫
A

φi(X0(ω))∫
Ω φi(X0(ω̃))P[µ](dω̃)

P[µ](dω)

for all measurable sets A. Similarly, but more simply, one obtains

E[φij(Y )] = Eνi [φj(X1)].

This gives us the exact formula for the variance

Theorem 2.2.1. It holds

VAR[φij(Y )] =
Eνi [φ2

j (X1)φi(X2)]
E[µ][φi(X0)] − Eνi [φj(X1)]2.

For committor functions, the term Eνi [φ2
j (X1)φi(X2)] is visualized in Figure 2.6, and can

be interpreted as the conditioned probability that one came last from core set Ai, moves for
lag time τ , goes next to core set Aj , then comes back from core set Aj , moving for lag time
τ again, and goes next to core set Ai.

Ai Aj

X0

X1

X2

Figure 2.6: Visualization of partial variance term.

Error for Short-Term Trajectories

If we take a close look at the variance formula for the long-term trajectory scheme in the
set-based case, it is obvious that the variance is quite high for transient sets. This makes
sense, because if we sample points globally by a long-term trajectory, then we need a lot of
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points in order to keep the estimation error low for transition regions, since they will hardly
be visited by the long-term trajectory. This fundamental error can be overcome by using
the short-term trajectory approach. We will see that the variance will become dramatically
smaller, even in transition regions.

We look again at the general case where the transfer operator is projected to a subspace D
with basis of measurable functions φ1, . . . , φn ≥ 0 on E. In this scenario, we must compute
the terms

Tij =
〈T φi, φj〉µ
〈φi,1〉µ

and Sij =
〈φi, φj〉µ
〈φi,1〉µ

.

To compute the variance associated to the error of S̃Sij , we need to compute VAR[φ̂j(Y )]
where Y distributed according to

µi(A) = 1
〈φi,1〉µ

∫
A

φi(x)µ(dx).

The variance is simply given as

VAR[φj(Y )] = E[φ2
j (Y )]− E[φj(Y )]2

= Eµi [φ2
j ]− Eµi [φj ]2.

In order to compute the variance associated to the error of T̃Sij , note first that we can rewrite
this term by

T̃Sij = 1
N

N∑
k=1
T φj(Yk),

where Y1, . . . , YN are distributed according to µi The error between the entries T̃Sij and Tij
is exactly given by

||Tij − T̃Sij ||L2(P) =
√

VAR(T φj(Y ))
√
N

,

where Y is distributed according to µi, this follows from the last section, as explained for
the approximation of the term in (2.6). Again, we split the term into

VAR[T φj(Y )] = E[(T φj)2(Y )]− E[T φj(Y )]2.

The last term can be rewritten to

E[T φj(Y )]2 (∗)=
(∫

E

T φj(x)µi(dx)
)2

= Eµi [Ex[T φj(X1)]]2,

and the first term simplifies to

E[(T φj)2(Y )] (∗)=
∫
E

(T φj)2(x)µi(dx) = Eµi [Ex[φj(X1)]2],

where we have again used Equation (1.3) in (∗). Thus, for local sampling the variance is
given by

VAR[T φj(Y )] = Eµi [Ex[φj(X1)]2]− Eµi [Ex[φj(X1)]]2.
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Figure 2.7: Variance matrix of short-term trajectory approach (left) and long-term
trajectory approach (right) of V .

Whenever φj ≤ 1 one has VAR[T φj(Y )] ≤ 1 and thus

||Tij − T̃ij || ≤
1√
N
.

In the set based case where φi(x) = 1Ai(x) and φj(x) = 1Aj (x) the variance reduces to

VAR[T φj(Y )] = Eµi [Px[X1 ∈ Aj ]2]− P[X1 ∈ Aj | X0 ∈ Ai]2.

Another advantage of the local sampling method is that it can be computed without the need
to double the trajectory length.

Smart Starting Points

So far it has become clear that the long-term trajectory approach is unfeasible in high
dimensions at that the short-term trajectory has advantageous error bounds and is feasible in
high dimensions. We will now discuss if we can improve the short-term trajectory approach
further by adjusting the number of starting points in correlation to a precomputed variance
matrix, as opposed to using the same number of starting points for all sets.

Going back to the example from Figure 2.3 in which we considered a partition of 20
equidistant sets, we obtain a short-term variance matrix M ∈ R20×20 which is visualized
in Figure 2.7. To introduce the following scheme, consider the vector ĉ ∈ R20 with ĉi =
max{Mi,1, . . . ,Mi,20} and denote with c the normalization of ĉ, i.e.

ci = ĉi∑20
j=1 ĉj

.

For a given number of starting points N , we use approximately N · ci starting points in set
Ai. The question arises of whether this distribution of starting points performs better then
the equal distribution of starting points between the 20 sets. The result is given in Table 2.4
and shows that whether the starting points are chosen in accordance with the variance, or
are equally distributed, does not appear to make a significant difference.
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trajectories E[λ1] σ(λ1) E[λ2] σ(λ2) E[e] σ(e)

5, 000 0.9995 4, 6 · 10−4 0.0331− 0.0052i 0.0621 0.2605 0.1019

50, 000 0.9995 1, 4 · 10−4 0.0589 0.16 0.16 0.0447

500, 000 0.9995 4, 7 · 10−5 0.0591 7.1 · 10−4 0.1225 0.0092

5, 000, 000 0.9995 1, 5 · 10−5 0.0590 2.1 · 10−4 0.1150 9.7 · 10−4

Table 2.4: Computation of short-term trajectories with special start points of V .
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Figure 2.8: Intricate potential V2.

Since the outcome of the example for the double potential was not insightful, we investi-
gate this further for a more complex potential V2 given in Figure 2.8 with the gradient

∇V2(x) = 0.3(x+ 2.7)(x+ 2)(x+ 1)x(x− 1)x(−1.9)(x− 2.7).

Although we change the potential, we still keep the step size dt = 0.001 and the trajec-
tory length τ = 200 · dt, and consider the Galerkin projection onto the partition of 20
equidistant sets from [−3, 3]. The associated variance matrix can be seen in Figure 2.9. We
conducted an experiment by computing 100 Galerkin projections for short-term trajectories
with equally distributed starting points. For each Galerkin projection, the eigenvalues λ2, λ3

were computed. The term E[λi] describes the mean value of the i-th eigenvalue from the 100
computations, and σ(λi) describes the associated standard variance of the 100 computations.
We conducted the same experiment again, but this time with starting points distributed
according to the vector c as explained above. We denote the eigenvalues of this Galerkin
projection with λ̂i, the mean value of the experiment with E[λ̂i] and the standard variance
by σ(λ̂i). The results can be found in Table 2.5 and Table 2.6. Even for the more complicated
potential V2, the proposed smart strategy seems not to make a notable difference for the
Galerkin projection.
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Figure 2.9: Variance matrix of short-term trajectory approach (left) and long-term
trajectory approach (right) for V2

trajectories E[λ1] σ(λ1) E[λ2] σ(λ2)

500 0.9440 0.0209 0.79 0.0463

5, 000 0.9394 0.0149 0.78 0.027

50, 000 0.9384 0.0209 0.793 0.0216

Table 2.5: Computation of short-term trajectories with special starting points of V2

trajectories E[λ1] σ(λ1) E[λ2] σ(λ2)

500 0.9438 0.0139 0.7832 0.00441

5, 000 0.9382 0.0215 0.7936 0.0225

50, 000 0.9397 0.0015 0.7869 0.0261

Table 2.6: Computation of short-term trajectories with equidistant starting points of
V2
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Non Reversible Case for Long-Term Trajectories

If T is not reversible, we can use Proposition 1.3.15 which shows the existence of a process
(X̃n) with T 1A(x) = Ex[1A(X̃1)] and one could rewrite the variation as

E[φ2
ij(Y )] = 1

µ(Ai)2Eµ
[
1Ai(x)Ex

[
1Aj (X1)EX1

[
1Ai(X̃1)

]]]
,

or more shortly and only in dependency of the reversed transition kernel as

E[φ2
ij(Y )] = 1

µ(Ai)2

∫
Aj

(
p̃(x,Ai)

)2
µ(dx),

which shows

E[φ2
ij(Y )] ≤ 1

µ(Ai)2

∫
Aj

p̃(x,Ai)µ(dx) = P[X̃0 ∈ Aj | X̃1 ∈ Ai]
P[X̃1 ∈ Ai]

.

The same upper bound can be derived more shortly as follows. From 1A ≤ 1 we certainly
have T 1A ≤ T 1 = 1 and thus we get

E[φ2
ij(Y )] ≤ 1

µ(Ai)2

∫
Ai

Ex[1Aj (X1)]µ(dx)

= 1
µ(Ai)2

∫
Ai

p(x,Aj)µ(dx)

= Pµ[X1 ∈ Aj | X0 ∈ Ai]
Pµ[X0 ∈ Ai]

.

In short, for any process whether reversible or not, one can estimate the variance corre-
sponding to long term-trajectories as:

VAR[φij(Y )] ≤ Pµ[X1 ∈ Aj | X0 ∈ Ai] ·
(

1
Pµ[X0 ∈ Ai]

− Pµ[X1 ∈ Aj | X0 ∈ Ai]
)
.

Non Reversible Case for Short-Term Trajectories

If T is not reversible, we can use again Proposition 1.3.15 which shows the existence of
a process (X̃n) with T φ(x) = Ex[φ(X̃1)]. Then, the variance for local sampling in the
non-reversible case is exactly given by

VAR[T φj(Y )] = Eµi [Ex[φj(X1)]2]− Eµi [Ex[φj(X̃1)]]2.

The Jensen Inequality for Reversible Markov Chains
If we combine the formula for the variance and the fact that the variance is always non
negative4, we obtain a surprising relation which proves true for all reversible Markov chains:

P[X2τ ∈ A, Xτ ∈ B,X0 ∈ A] ≥ P[Xτ ∈ B,X0 ∈ A]2

4This is also a special case of the Jensen Inequality.
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for all A,B ∈ Σ. Setting B = E in particular produces the even more peculiar trueness

P[X2τ ∈ A | X0 ∈ A] ≥ P[X0 ∈ A] = µ(A)

for all reversible Markov chains. Specifically, if (Xt)t≥0 is the solution of Equation (2.5),
then we have

P[Xt ∈ A | X0 ∈ A] ≥ P[X0 ∈ A]

for any t ≥ 0, A ∈ Σ. In other words, it is always more likely for a reversible process to
return to a set A than to be in it. In a case where the reversible Markov chain only has a
finite state space and is decoded by a transition matrix P with stationary π, the equation
states ∑

i,j∈A
P 2(i, j) ≥

∑
i∈A

πi,

and in particular for A = {i}, we obtain

P 2(i, i) ≥ πi . (2.10)

One may note that if P ∈ Rn×n is a reversible Markov chain according to a stationary
distribution π, and if

n∑
i=1

P 2(i, i) = 1

holds, then this implies that P 2(i, i) = πi for i = 1, . . . , n, which also shows that π is actually
the unique invariant measure to which P is reversible5. In particular, for the case n = 2 this
can be characterized by

1 =
2∑
i=1

P 2(i, i)

= (p11)2 + p12p21 + p21p12 + (p22)2

= (p11)2 + 2(1− p11)(1− p22) + (p22)2

which is equivalent to
(p11 + p22 − 1)2 = 0.

Notably, the Inequality (2.10) is sharp and we obtain equality for 2 by 2 matrices if and only
if p11 + p22 = 1. Equality (2.10) is sharp if the function

e(p11, p22) = p2
11 + 2(1− p11)(1− p22) + p2

22

is equal to 1. The function is plotted in Figure 2.10.
From the variance formula for measurable functions one obtains by setting φj = 1 the

following trueness for reversible Markov chains:

Eνi [φi(X2)] ≥ E[µ][φi(X0)]

5Not every reversible transition matrix possesses a unique invariant measure for which it is reversible,
consider for example P = Id.
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Figure 2.10: Sharpness of Equality (2.10).

for any measurable function φi. In the case where φi represents a committor function of a
core set Ci, this shows that the conditioned probability that one came last from core set Ci,
moves for two time steps, and goes next to core set Ci is always greater or equal then the
probability that one came last from core set Ci.

2.3 The Girsanov Reweighting Scheme

We now return to the special problem in computational drug design, of how to find a perfect
matching ligand molecule that binds to a malicious receptor molecule in order to inhibit the
latter’s biological activity. In application, one is often interested in testing multiple slightly
different ligands on the same large receptor in order to identify the best fitting ligand. A
special receptor-ligand pair is visualized in Figure 2.11. Although the total system is barely
altered when the small ligand is exchanged, a complete new Galerkin projection has to be
computed each time, involving the dismissal of all previously computed trajectories and
calculation of new trajectories in the slightly changed system. In this section we will present
a method by which trajectories from the preceding system can be used to help to compute
the Galerkin projection after modifying the ligand, saving us from having to compute all the
trajectories again. Instead, we only have to compute weights.

These results have previously been published in [51].

Girsanov Transformation
The reweighting scheme is based on the Girsanov transformation. Therefore, we need a
short introduction of it.

To this end, let Y xt = Y xt (ω) and Xx
t = Xx

t (ω) be the solutions on a probability space
(Ω,Σ,P) of the stochastic differential equations

dY xt = −∇V (Y xt )dt+ σdBt (2.11a)

dXx
t = −(∇V (Xx

t ) +∇U(Xx
t ))dt+ σdBt (2.11b)

and deterministic initial conditions

Y x0 (ω) = Xx
0 (ω) = x almost surely.
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Figure 2.11: Crystal structure of the Phosphoinositol(3,4)-Bisphosphate

For both stochastic differential equations the associated Gibbs distributions are

µ(x) = 1
Z

exp(−βV (x))

and
µR(x) = 1

ZR
exp(−β(V (x) + U(x)))

with associated normalization constant

Z =
∫

exp(−βV (x)) dx and ZR =
∫

exp(−β(V (x) + U(x))) dx.

Define ξt ∈ Rn by

ξt = σ−1∇U(Y xt ) =
√
β

2 · ∇U(Y xt ).

It follows from the Girsanov theorem [42, Thm. 8.6.8], also known as the Cameron-Martin-
Girsanov theorem [55] that for

Q[A] :=
∫
A

Mt(ω)P(dω)

with

Mt := exp
(
−
∫ t

0
ξs · dBs −

1
2

∫ t

0
|ξs|2ds

)
,
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for any measurable set A we get

P[Xx
t ∈ A] = Q[Y xt ∈ A],

which can also be written as∫
1A(Xx

t (ω))P(dω) =
∫
1A(Y xt (ω))Q(dω).

In particular, we obtain

E[1A(Xx
t )] =

∫
1A(Xx

t (ω))P(dω)

=
∫
1A(Y xt (ω))Q(dω)

=
∫
1A(Y xt (ω))Mt(ω)P(dω)

= E[Mt1A(Y xt )]

for any measurable set A.

Weighting Scheme
This weighting scheme was developed by the author in collaboration with Christof Schütte
and Marcus Weber [51].

Let us take a partition A1, . . . , An of E and denote with T the Galerkin projection from
the stochastic differential equation (2.11a) and with TR the Galerkin projection from the
stochastic differential equation (2.11b), in which both Galerkin projections are onto the
associated indicator functions. Then, our result yields that

TRij = 1
µR(Ai)

〈
T 1Ai ,1Aj

〉
µR

= 1
µR(Ai)

〈
1Ai ,U1Aj

〉
µR

= 1
µR(Ai)

∫
1Ai(x) · E

[
1Aj (Xx

t )
]
µR(x)dx

= 1
µR(Ai)

∫
1Ai(x) · E

[
1Aj (Y xt ) exp

(
−
∫ t

0
ξs · dBs −

1
2

∫ t

0
|ξs|2ds

)]
µR(x)dx.

We have
µR(x) = 1

ZR
exp

(
− β(V (x) + U(x))

)
= Z

ZR
µ(x) exp(−βU(x)),

integrating on both sides and multiplying with ZR reveals∫
exp

(
− β(V (x) + U(x))

)
dx = Z ·

∫
E

µ(x) exp(−βU(x)) dx = Z · Eµ[e−βU ],

which reveals
ZR =

∫
exp

(
− β(V (x) + U(x))

)
dx = Z · Eµ[e−βU ],

and thus

µR(x) = µ(x) · exp(−βU(x))
Eµ[e−βU ] .
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All in all, we have

TRij = 1
µR(Ai)

∫
Ai

wj(t, x) g(x)µ(x)dx,

wj(t, x) = E
[
1Aj (Y xt ) exp

(
−
∫ t

0
ξs · dBs −

1
2

∫ t

0
|ξs|2ds

)]
,

ξs =
√
β

2 · ∇U(Y xs ),

g(x) = e−βU(x)

Eµ(e−βU ) .

Consequently, based on the trajectory information that was gained to compute Tij , in
principle we can also compute TRij .

Note that for
Cij =

∫
Ai

wj(t, x) g̃(x)µ(x)dx

with
g̃(x) = e−βU(x),

we obtain
m∑
j=1

Cij =
∫
Ai

g̃(x)µ(x)dx,

and, therefore,
Cij∑m
j=1 Cij

= Cij∑m
j=1 Cij

1
c
1
c

= TRij

for c = Eµ(e−βU )
The content which follows is once again the independent work of the author.

Algorithmic Realization
In the following, we compare different approximations of the transition matrix TR related
to (2.11b). One form of approximation of TR is through direct computation, i.e., using the
trajectories from (2.11b). We will denote this approximation by T̃R,dir. The other one results
from the reweighting scheme based on trajectories of (2.11a), denoted simply by T̃R. The
computation of T̃R,dir is gained by the long-term trajectory approach as explained in the
preceding section. We now explain the implementation of the reweighing scheme in detail.

Reweighted computation To gain T̃R, we compute a long trajectory (Yi)i=0,...,n−1 for
the unperturbed dynamics (2.11a) by performing n timesteps of size dt using the
Euler-Maruyama discretization

Yi+1 = Yi − (∇V (Yi)) dt+ σ
√
dt ηi

of (2.11a), where ηi = (η1
i , . . . , η

d
i ) are independent d-dimensional random variables

distributed according to the standard normal distribution. We divide this trajectory
into pieces of length l yielding M subtrajectories (Y ki )i=1,...,l := (Ylk, . . . , Yl(k+1)−1)
for k = 0, . . . ,M − 1. For a long enough trajectory, it can be assumed that the points
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Y 0
1 , . . . , Y

M−1
1 are distributed according to µ. Now we have to approximate for each

subtrajectory (Y ki )i=1,...,l the term Mt(Y kl ) with t = l · dt. To do so, we note that for

R =
∫ t

0
ξs dBs + 1

2

∫ t

0
|ξs|2ds =

d∑
i=1

(∫ t

0
ξs(i) dBis

)
+ 1

2

∫ t

0
|ξs|2ds

we have Mt = exp (−R), where Bs =
(
B1
s , . . . , B

d
s

)
denotes the d-dimensional Brown-

ian Motion with independent components. Thus we need to approximateR. Now each
component

∫ t
0 ξs(i) dB

i
s can be computed with the Euler-Maruyama discretization by∫ t

0
ξs(i) dBis ≈ ril − ri0,

where

ri0 = xk1

rij+1 = rij + [ξ(rij)(i)] ηi(kl+j)
√
dt

and
ξ(r) = σ−1∇U(r).

Therefore, for each trajectory (xki )i=1,...,l we calculate the weight wk by

rk =
d∑
i=1

(ril − ri0) + 1
2

l∑
i=1
|ξ(Y ki )|2 dt

wk = exp(−rk).

Finally, we can compute T̃R by

C̃ij =
M−1∑
k=0

1Ai(Y k1 )1Aj (Y kl )wk g̃(xk1)

and

T̃Rij = C̃ij∑m
i=1 C̃ij

.

We conclude this section with some remarks.

• The division of the long trajectory into subtrajectories can be be optimized by sampling
µ distributed points according to the Metropolis Monte Carlo method and sampling
short trajectories.

• It is essential that the the random vector η(kl+i) which was used to compute the term
Y ki+1 is also used to compute the corresponding term rkl+i.
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From Butane to Pentane
We now use the following example to show how Girsanov reweighting can be implemented
when the ligand’s dimension is changed. Consider the one-dimensional, 2π-periodic, artificial
potential VB : R→ R of the dihedral angles for butane given by

VB(x) = a+ b cos(x) + c cos2(x) + d cos3(x)

with a=2.0567, b=-4.0567, c=0.3133, d=6.4267 and the two-dimensional, 2π-periodic,
artificial potential VP : R2 → R2 of the dihedral angles for pentane given by

VP (x, y) = VB(x) + VB(y).

We will compute the Galerkin projection from pentane by only using trajectories from

Figure 2.12: Butan Figure 2.13: Pentane

butane together with the computed weights. Thus, we use the Girsanov reweighting scheme
with V (x, y) = VB(x) and U(x, y) = VP (x, y)− VB(x).

We keep the notation T̃R for the Galerkin projection associated with (Xx
t ) from (2.11b),

which depends on V and U . If we choose σ =
(
σ1 0
0 σ1

)
with σ2

1 = 2β−1 and β = 0.5, then,

when replacing Y xt =
(
yt

zt

)
, the equation (2.11a) changes to

dyt = ∂VB(yt)
∂x

+ σ1dB
1
t

dzt = σ1dB
2
t .
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Figure 2.14: Stationary distribution of of Markov State Model from T̃R (left) and
Stationary distribution of T̃ (right).
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Figure 2.15: Stationary distribution of T̃R,dir.

Eigenvalues λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

T̃R 0.952 0.947 0.946 0.941 0.902 0.896 0.895 0.890 0.648

T̃R,dir 0.952 0.952 0.946 0.946 0.906 0.901 0.900 0.895 0.643

Table 2.7: From butane to pentane: First dominating eigenvalues of T̃R and T̃R,dir.

Note that both terms yt and zt can be solved independently. The term yt represents a
trajectory of butan and the term zt represents the Brownian motion.

We now compute both trajectories independently by performing n = 4 · 108 timesteps of
size dt = 0.001 using the Euler-Maryama discretization

yi+1 = yi −∇V (yi) dt+ σ1
√
dt η1

i ,

zi+1 = zi + σ1
√
dt η2

i .

This yields two statistically independent discrete trajectories yi, zi, i = 0, . . . , 4 · 108 − 1.
We cut the long trajectory into pieces of length l = 400, yielding M = 10.000.000 subtra-

jectories (yki )i=1,...,l, (zki )i=1,...,l, k = 0, . . . ,M − 1.
We divide [0, 2π) into 30 sets Ai = [xi, xi + ∆x), i = 1, . . . , 30 with xi = (i − 1)∆x

and ∆x = 2π/30. Then, we partition [0, 2π)2 into 900 sets Bij with Bij = Ai × Aj for
i, j = 1, . . . , 30 and use the above scheme to construct T̃R. In addition we compute an
analogous trajectory for pentane and construct T̃R,dir based on the same complete partition
(Bij) to compare our approximation.

The eigenvalues given in Table 2.7 and the eigenvector for eigenvalue λ = 1 given
in Figure 2.14 and Figure 2.15 show that the weighted transition matrix T̃R is a good
approximation of T̃R,dir.
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From Butane to Pentane in Atomic Resolution
We have seen that we can compute a Galerkin projection from pentane simply by simulating
a trajectory of butan, a Brownian motion on the interval [0, 2π], and the Girsanov weights.
However, for trajectories in full atomic resolution instead of the torsian angle potential, a
Brownian motion on R3n will not be helpful and one can has to proceed in a different way.
First, one needs to split the molecule of interest into two parts6 that coincide in one single
atom, as shown in Figure 2.16. Then, for each part one has to simulate an independent
trajectory in full atomic resolution, but one needs to fix the point of coincide7 in both
simulations. Then one can merge both trajectories together, and the resulting trajectory
can be seen as the outcome of the original molecule - without taking into account the
interactions between the two parts that were once separated. To be more accurate, let us
label the position in state space of the atoms from pentane at timestep i by x1

i , . . . , x
17
i ∈ R3.

We will now fix the yellow atom 13 shown in Figure 2.16; for instance we could choose
x13
i = (0, 0, 0) for any i ∈ N. We then consider the separated parts independently. The lower

half of pentane including the yellow atom consists now consists of 13 atoms, but only 12 of
them can have a freedom degree. Thus, if we denote the corresponding force field with V1

it only takes into account the interactions of the first 12 atoms, since the 13th is fixed. A
trajectory of the lower part can then be computed by

x1
i+1
...

x12
i+1

 = −∇V1


x1
i

...
x12
i

 dt+ σ


dB1

i

...
dB12

i

 .

Analogously we can evaluate the upper half with four degrees of freedom by a force field V2
x14
i+1
...

x17
i+1

 = −∇V2


x14
i

...
x17
i

 dt+ σ


dB14

i

...
dB17

i

 .

Thus, if we join the two independent trajectories together at atom x13
i for all i ∈ N, then the

resulting artificial trajectory z can be viewed as the outcome of the solution of the stochastic
differential equation

dzt = −∇V (zt) dt+ σdBt. (2.12)

where

zi :=



x1
i

...
x12
i

x14
i

...
x17
i


and V (zi) := V1


x1
i

...
x12
i

+ V2


x14
i

...
x17
i

 .

6Note that these parts are artificial constructions and no physically meaningful molecules.
7The yellow point in Figure 2.16.
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If one now denotes with U(z) the potential that only takes into account the interactions
between (x1, . . . , x12) and (x14, . . . , x17), we can reformulate the problem of how to construct
the Galerkin projection of the solution of

dzt = −∇(V (zt) + U(zt)) dt+ σdBt

when only trajectories of (2.12) are available. With this approach, one can compute new
ligands which are created by joining together preexisting ligands. Calculating the weights
is more efficent then computing new trajectories, because one only needs to consider the
interactions between the separated parts.

Figure 2.16: Left: Splitting pentane in two parts. Right: Merged parts.

The Advantage for Applications
In this section we presented a method by which trajectories from the preceding system can
be used to help to compute the Galerkin projection after modifying the ligand, saving us
from having to compute all the trajectories again. Instead, we only have to compute weights.
Unfortunately, it turned out that in order to compute the weights, we have to compute as
many trajectories as we would have when computing new trajectories for the preceding
system from scratch. However, it also turned out that these trajectories can be computed
for a much simpler potential. In practice, this means that for a molecule like that shown in
Figure 2.11, computation of the new trajectories for the weights need not include all the
interactions between all the atoms of the receptor, but only the interaction between the
atoms of the receptor and the ligand.

As show in the last section, one may benifit from trajectories of some artificial constructed
objects as shown on the left in Figure 2.16 that are not physically meaningful molecules, but
which help to create the Galerkin projection for physically meaningful molecules.
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3Make it Reversible

„If you make a mistake and do not correct it, this is
called a mistake.

— Confucius

In the preceding chapters, we have discussed the nature of the transfer operator, and how
to obtain a Galerkin projection. In this chapter, we will reveal that the Galerkin projection
has an advantageous property that unfortunately is sometimes lost due to numerical errors
in the computation schemes. We will present a method for restoring the property after the
computation of the Galerkin projection has been obtained. These results have previously
been published in [41].

We denote with (E,Σ, µ) a probability space.

3.1 The Reversible Property

We return to the general situation in which we are concerned with a Galerkin projection
of a self-adjoint transfer operator T : L2(µ) → L2(µ) onto a finite subspace D with basis
{φ1, . . . , φn} which fulfills

n∑
i=1

φi(x) = 1

for all x ∈ E and φi(x) ≥ 0 for all x ∈ E. The Galerkin projection can be computed by
approximating the matrices T = [Tij ] and S = [Sij ] where

Tij =
〈T φi, φj〉µ
〈φi,1〉µ

and

Sij =
〈φi, φj〉µ
〈φi,1〉µ

by the standard methods outlined in Chapter 2. We will now derive some simple properties
of T . Since S is a special case of T where T is the identity map, i.e. T f = f for all f ∈ L2(µ),
all properties of T also apply to S.

The first property is that T is a transition matrix. This is because Tij ≥ 0 and

n∑
j=1

Tij =
n∑
j=1

〈T φi, φj〉µ
〈φi,1〉µ

=
〈T φi,1〉µ
〈φi,1〉µ

=
〈φi,U1〉µ
〈φi,1〉µ

=
〈φi,1〉µ
〈φi,1〉µ

= 1.
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Secondly, the vector π = (〈φ1,1〉µ , . . . , 〈φn,1〉µ) is a stationary vector of the matrix T , i.e.
πT = π, because

πT (j) =
n∑
k=1

πkTkj =
n∑
k=1
〈T φk, φj〉µ = 〈1, φj〉µ = πj .

Thirdly, because we are modeling our molecule using the stochastic differential equation
(2.5), we know that the transfer operator T is self-adjoint. This implies that the Markov
chain T is reversible according to π, i.e.

πiTij = πjTji

for i, j = 1, . . . , n, this follows from

πiTij = 〈T φi, φj〉µ = 〈φi, T φj〉µ = πjTji.

Summarizing, T fulfills the following four conditions

(i) πT = π,

(ii) DT = TTD ,

(iii)
∑n
j=1 Tij = 1 for all i = 1, . . . , n,

(iv) Tij ≥ 0,

where D = diag(π(1), . . . , π(n)) denotes the diagonal matrix of π. A matrix fulfilling these 4
conditions is called a π-reversible Markov chain.

If we use the computation schemes from Chapter 2, we end up with a matrix T̃ which
might not fulfill these conditions because of the numerical estimation errors. Thus, our
problem can now be formulated as the following:

For a given transition matrix T̃ together with a norm, does a π-reversible matrix T ∗

exists that is closest to T̃ ?

This question will be answered in the next section.

3.2 Finding the Closest Reversible Matrix

Given a transition matrix T̃ ∈ Rn×n and a probability vector π̂ ∈ Rn, it will be proven in
the following that for every norm || · || which is induced by a scalar product, there exists a
unique π̂-reversible matrix T ∗ which minimizes ||T ∗ − T̃ ||. Note that the probability vector
π̂ can be chosen arbitrarily. As a little teaser, let us consider the Markov chain

TEx =

0 1 0
0 0 1
1 0 0


represented in Figure 3.1. Its stationary vector is π1 =

( 1
3 ,

1
3 ,

1
3
)

and the closest reversible
Markov chain of TEx according to the Frobeniusnorm and π1 can be found in Figure 3.2.
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2

1 3

Figure 3.1: Simple Markov chain.

For the arbitary probabilty vector π2 =
( 1

4 ,
1
4 ,

1
2
)
, the closest reversible Markov chain of TEx

according to the Frobeniusnorm with π2 as stationary measure is highly non-trivial and can
also be found approximately in Figure 3.2. At the end of this section, it will become clear
how these matricies can be computed.
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Figure 3.2: Corrected reversible Markov chain according to π1 (left) and π2 (right).

We now give a brief outline of the proof. For the moment, let us assume that n = 2, then
any 2× 2 transition matrix P can be presented as a point (a, b) ∈ [0, 1]2 in the unit square as

P =
(
a 1− a
b 1− b

)
, with a, b ∈ [0, 1].

We then consider the set X of all π̂-reversible matrices as a subset of the unit square, which
is represented as the blue line in Figure 3.3. We show then that the map

X → [0,∞)

A 7→ ||A− T̃ ||

is strongly convex and thus possesses a unique minimum on the convex set X. The map
is represented in Figure 3.3 as the red graph above X. We will show how to pose this
problem as a quadratic convex optimization problem which can be used to compute the
closest π̂-reversible Markov chain T ∗. As Stephen P. Boyd and Lieven Vandenberghe [9]
have stated,

“With only a bit of exaggeration, we can say that, if you formulate a practical
problem as a convex optimization problem, then you have solved the original
problem.”

We will see later how elastic the term exaggeration actually is.
We will now give the proof. As a first step, we need to find out how to describe a matrix in

X. We do so by considering the smallest subspace U that contains X, and then we construct
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Figure 3.3: Convex set X (blue) and convex map A→ ||A− T̃ || (red).

a basis of U . Note that X itself is not a subspace, because for A ∈ X we have αA /∈ X for
α 6= 1, α ∈ R, since αA is not stochastic anymore. Therefore, we start with the subspace

U = {A ∈ Rn×n | DA = ATD and ∃k ∈ R with
n∑
j=1

Aij = k for i = 1, . . . , n}

where D = diag(π̂1, . . . , π̂n) denotes the diagonal matrix with the values π̂i on the diagonal.
Notice that U is actually a subspace of Rn×n because for A,B ∈ U with

∑n
j=1 a1j = k1 and∑n

i=1 b1j = k2 we get

D(αA+ βB) = αDA+ βDB = αATD + βBTD = (αA+ βB)TD

for any α, β ∈ R, and

n∑
j=1

αaij + βbij = αk1 + βk2 for all i = 1, . . . , n

holds. The subspace U contains X. A π̂-reversible Markov chain always has π̂ as a stationary
distribution. For a matrix in U we get the following generalization of this property.

Lemma 3.2.1. For A ∈ U with
∑n
j=1Aij = k it holds π̂TA = kπ̂T .

Proof. Since A ∈ U , we have π̂iAij = π̂jAji. Therefore, we obtain

(π̂TA)i =
n∑
l=1

π̂lAli = π̂i

n∑
l=1

Ail = π̂ik.
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To understand the space U , the following matrices are of interest:

A
[r,s]
ij =



π̂s if i = r and j = s,

π̂r if i = s and j = r,

1− π̂s if i = j = r,

1− π̂r if i = j = s,

1 if i = j and s 6= i 6= r,

0 else,

which is given in matrix notation as

A[r,s] =



r s

1
. . .

1
r 1− π̂s π̂s

1
. . .

1
s π̂r 1− π̂r

1
. . .

1


and

δ
[r,s]
ij =


1 if i = j and i 6= r,

1 if i = r and j = s,

0 else,

which is given in matrix notation as

δ[r,s] =



r s

1
. . .

1
r 0 1

1
. . .

1
s 1

1
. . .

1



.

Proposition 3.2.2. The family

((A[r,s])(r,s)∈IA , (δ
[r,s], δ[s,r])(r,s)∈IB , Id)
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is a basis of U , where Id is the identity matrix and

I = {(r, s) | 1 ≤ r < s ≤ n},

A = {i : π̂i 6= 0},

B = {i : π̂i = 0},

IA = {(r, s) ∈ I | r ∈ A or s ∈ A},

IB = {(r, s) ∈ I | r, s ∈ B}.

The dimension of U is given by

dim(U) =
(
n

2

)
+ 1 +

(
|B|
2

)
.

Proof. First of all, we need to show that the claimed basis actually belongs to U . Further, we
will see that this basis also belongs to X. First, we observe that the row sum of Id, A[r,s] and
δ[r,s] is always 1, and that

DA[r,s] =
(
A[r,s]

)T
D

holds. The latter follows from (
DA[r,s]

)
ij

=
n∑
k=1

DikA
[r,s]
kj

= π̂iA
[r,s]
ij

(∗)= π̂jA
[r,s]
ji

=
n∑
k=1

A
[r,s]
ki Dkj

=
(

(A[r,s])TD
)
ij
,

where (∗) holds because for i = r and j = s we have

π̂iA
[r,s]
ij = π̂rπ̂s = π̂sπ̂r = π̂jA

[r,s]
ji ,

the same holds for i = s and j = r. If i = j holds, then the equation in (∗) is trivial and in
all other cases we have A[r,s]

ij = A
[r,s]
ji = 0, and therefore A[r,s] ∈ U . Also, we have

Dδ[r,s] = δ[r,s]TD

for all (r, s) ∈ IB . This is because π̂r = 0 and, therefore,

Dδ
[r,s]
i,j =

π̂i if i = j,

0 else.

Since Dδ[r,s] is just a diagonal matrix, it is symmetric, and we obtain

Dδ[r,s] = (Dδ[r,s])T = δ[r,s]TD;
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the argument for δ[s,r] is analogous . Therefore the family is actually contained in X. In
order to prove that these matrices are indeed a basis of U , it remains to show that they are
linearly independent and that they span the subspace U .

We start by showing that the family is linearly independent. To do so, let us take an
arbitrary linear combination of zero:∑

(r,s)∈IA

αr,sA
[r,s] +

∑
(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r] + αI = 0.

For (r, s) ∈ IA the matrix A[r,s] is the only matrix in the above linear combination that could
have a non-zero entry in row r and column s and in row s and column r. Therefore, we
obtain

0 = αr,sπ̂s and 0 = αr,sπ̂r.

Thus, π̂s 6= 0 or π̂r 6= 0 provides αr,s = 0. For (r, s) ∈ IB, we obtain analogously αr,s =
0 and βr,s = 0. The linear combination reduces to α Id = 0 which, finally, leads us to
α = 0.

It remains to show that the given matrices span the subspace U . Consider a matrix C ∈ U
with

∑n
j=1 Cij = k for some k ∈ R. For (r, s) ∈ IA define αr,s := Csr

π̂r
if π̂r 6= 0 and otherwise

αr,s := Crs
π̂s

. From π̂rCrs = π̂sCsr we get

αr,sA
[r,s]
rs = Crs and αr,sA

[r,s]
sr = Csr.

For (r, s) ∈ IB choose
αr,s = Cr,s and βr,s = Cs,r.

Since each off-diagonal element appears in exactly one matrix, C differs from

C̃ :=
∑

(r,s)∈IA

αr,sA
[r,s] +

∑
(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r]

only in the diagonal. Because C̃ is a linear combination of the elements in U , we know that
C̃ ∈ U and thus that a l ∈ R exists with

∑n
j=1 C̃ij = l for i = 1, . . . , n. Therefore, the matrix

Ĉ := C̃ + (k − l) Id has row-sum k and

Ĉii = k −
n∑

j=1,j 6=i
Ĉij = k −

n∑
j=1,j 6=i

Cij = Cii,

holds. Therefore, we have C = Ĉ which shows that the given matrices span U . Furthermore,
counting all the family parts together leads to

dimU = |IA|+ |IB |+ |IB |+ 1 = |I|+ |IB |+ 1.

The statement follows from

|I| =
(
n

2

)
and

|IB | =
(
|B|
2

)
.
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We have now identified a basis of U . Next, we will use this basis to find a neat characteri-
zation of the set X. This characterization of the set

X = {A ∈ U | Aij ≥ 0 for i, j = 1, . . . , n and
n∑
j=1

a1j = 1}

will lead us to the direct path to the closest π̂-reversible matrix. To simplify notation, let us
denote the basis of Proposition 3.2.2 by (vi)i=1,...,m with m = dimU and vm = Id. For any
matrix A ∈ U a unique coefficient vector x ∈ Rm exists with A =

∑m
i=1 xivi. We will now

find the conditions on the coefficient vector x ∈ Rm that are sufficient and necessary for
assuring A ∈ X. First, the row-sum of a matrix and the coefficient vector are related in the
following way

n∑
j=1

aij =
n∑
j=1

(
m∑
l=1

xlvl(i, j)
)

=
m∑
l=1

xl

 n∑
j=1

vl(i, j)


=

m∑
l=1

xl.

Thus, we have that a matrix A ∈ U has row-sum one, if and only if 1Tx = 1 where 1 ∈ Rm

is the constant vector 1i = 1 for i = 1, . . . ,m. However, this condition is not enough to
assure that A ∈ X. For that we also need to assure aij ≥ 0 for all i, j. In the case of i 6= j

we get aij ≥ 0 if and only if xl ≥ 0 for all l = 1, . . . ,m− 1, since each off-diagonal element
appears in exactly one of the matrices v1, . . . , vm−1. This can be rewritten as −xei ≤ 0 for
i = 1, . . . ,m − 1. However, the diagonal entries of A can be non-negative even if xm is
negative. Thus, to assure the non-negative diagonal entries as well requires a little effort. To
see how to find the associated condition, let A be given as

A =
∑

(r,s)∈IA

αr,sA
[r,s] +

∑
(r,s)∈IB

αr,sδ
[r,s] + βr,sδ

[s,r] + αId,

which reveals

aii =
∑

(r,s)∈IA

αr,sA
[r,s]
ii +

∑
(r,s)∈IB

αr,sδ
[r,s]
ii + βr,sδ

[s,r]
ii + αIii.

This leads to

aii =
∑

(r,s)∈IA
r=i

αr,s(1− π̂s)+
∑

(r,s)∈IA
s=i

αr,s(1− π̂r)+
∑

(r,s)∈IA
r 6=i6=s

αr,s+
∑

(r,s)∈IB
r 6=i

αr,s+
∑

(r,s)∈IB
s6=i

βr,s+α.

The condition aii ≥ 0 is thus equivalent to −xgi ≤ 0 where

gi(j) =


1− π̂s if vj = A[i,s] for some s > i,

1− π̂r if vj = A[r,i] for some r < i,

0 if vj = δ[i,s] for some s,

1 else,
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for i = 1, . . . , n and j = 1, . . . ,m. All in all, given the matrix

C = −1 ·



eT1
...

eTm−1
gT1
...
gTn


∈ R(n+m−1)×m,

the condition that A =
∑m
i=1 xivi is in set X is equivalent to

Cx ≤ 0 and 1Tx = 1.

Our original intention was to show that for any transition matrix T̃ we find a π̂-reversible
Markov chain T ∗ ∈ X with

||T ∗ − T̃ || ≤ ||A− T̃ || for all A ∈ X.

Recall that the norm || · || is induced by a scalar product 〈·, ·〉, i.e.

||A|| =
√
〈A,A〉

for any matrix A ∈ Rn×n. Therefore we can rewrite the term to∥∥∥∥∥
m∑
i=1

xivi − T

∥∥∥∥∥
2

=
m∑

i,j=1
xixj 〈vi, vj〉 − 2

m∑
i=1

xi

〈
vi, T̃

〉
+
〈
T̃ , T̃

〉
= 1

2x
TQx+ xT f + c

where
Q(i, j) := 2 〈vi, vj〉 , f(i) = −2 〈vi, T 〉

and
c = 〈T, T 〉 .

Thus, we want to minimize the function

x 7→ 1
2x

TQx+ xT f + c (3.1)

with the restraints
Cx ≤ 0 and 1Tx = 1.

Since Q is a Gram matrix of linear independent vectors, it is positive definite. This follows
because for any x ∈ Rn

xTQx =
∑
i,j

xiQijxj =
〈

n∑
i=1

xivi,

n∑
i=1

xivi

〉

holds. Since v1, . . . , vn is a basis, we have that
∑n
i=1 xivi 6= 0 for x 6= 0 and, in consequence,

xTQx > 0 for x 6= 0. Since Q is positive definite, the quadratic function (3.1) is strongly
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convex. Therefore, we have formulated the problem into a strongly convex quadratic
programming problem that attains its global minimum [25, Theorem 1.15], since the
quadratic function is coercive, continuous and the set X is non-empty because of Id ∈ X.
Also, the global minimum is unique because the quadratic function is strongly convex. This
section can be summarized as follows.

Theorem 3.2.3. For any transition matrix T̃ , any stochastic vector π̂ and any norm || · ||
induced by a scalar-product, there exists a unique π̂-reversible Markov chain T ∗ ∈ X with

||T ∗ − T̃ || ≤ ||A− T̃ || for all A ∈ X.

3.3 Complexity and Eigenvalues

To avoid technical difficulties, we will assume in this chapter that π̂i > 0 for i = 1, . . . , n. For
A ∈ Rn×n the trace tr(A) is given by the sum of the diagonal elements

tr(A) =
n∑
i=1

Aii.

The following definition
〈A,B〉F := tr(ATB)

is a scalar product on Rn×n for A,B ∈ Rn×n. This scalar product induces the Frobenius
norm

||A||F =
√
〈A,A〉F =

√√√√ n∑
i=1

n∑
j=1
|aij |2.

The following complexity analysis will be given according to the Frobenius norm.

Complexity
Unfortunately, the matrix Q is quite large. This is because we are optimizing the entries of a
matrix in Rn×n and thus we have O(n2) unknowns. Specifically, we have Q ∈ Rm×m where

m = dim(U) = 1 + n2

2 .

Each entry of Q is given by a trace of two sparse matrices which can be computed using the
following formula

〈
A[r,s], A[r′,s′]

〉
F

=



n− π̂r − π̂r′ − π̂s − π̂s′ if r, r′, s, s′ are distinct,

n− 1− 2π̂s + (1− π̂r)(1− π̂r′) if r 6= r′, s = s′,

n− 1− 2π̂r + (1− π̂s)(1− π̂s′) if r = r′, s 6= s,

n− 1 + (1− π̂s)(1− π̂s′) + (1− π̂r)(1− π̂r′) if r = s′ or r′ = s,

n− 2 + (1− π̂r)2 + π̂2
r + (1− π̂s)2 + π̂2

s if r = r′ and s = s′.

.
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It might be worth noting that because of r < s and r′ < s′ other cases are not possible. Since
the proof of the formula is very technical, we only give a proof for the case r 6= r′ and s = s′;
all other cases can be obtained analogously. First, if A[r,s]

ij 6= 0 for i 6= j, it follows that either

i = r, j = s or i = s, j = r holds. Since r 6= r′, s = s′ we have A[r′,s′]
ij = 0, therefore,

〈
A[r,s], A[r′,s′]

〉
F

=
n∑
i=1

A
[r,s]
ii A

[r′,s′]
ii

= n− 3 +A[r,s]
rr A[r′,s′]

rr +A
[r,s]
r′r′A

[r′,s′]
r′r′ +A[r,s]

ss A[r′,s′]
ss

= n− 3 + 1− π̂s + 1− π̂s′ + (1− π̂r)(1− π̂r′)

= n− 1− 2π̂s + (1− π̂r)(1− π̂r′).

Hence, the computation required for a single entry of Q does not increase with n and the
effort to compute and store Q is O(n4).

Furthermore, the matrix Q is well-conditioned. For

k := min
r,r′,s,s′

〈
A[r,s], A[r′,s′]

〉
F
,

we obtain
k Id ≤ Q ≤ n Id

where the inequality has to be read component-wise. The upper bound follows from

〈vi, vj〉F ≤
√
〈vi, vi〉F

√
〈vj , vj〉F ≤ max

l=1,...,m
{〈vl, vl〉F }

and the fact that〈
A[r,s], A[r,s]

〉
F

= n− 2 + (1− π̂r)2 + π̂2
r + (1− π̂s)2 + π̂2

s ≤ n

and
〈Id, Id〉F = n

holds. Since Q is symmetric, its condition number according to the spectral norm is given by

κ(Q) = λmax

λmin
≤ n

k
.

Since k = n− c for a 0 < c < 4, we have

κ(Q) ≤ 1
1− c/n → 1

for n→∞, which validates the claim.
The convex minimization problem can be solved using a barrier method, e.g. the interior

point method. This method consists of N Newton iterations. The number N of Newton
iterations to find a strictly feasible point is bounded by

N ≤
√
n+ n2/2− 1 log

(
n+ n2/2− 1

ε

)
γ

where ε > 0 is the demanded accuracy and γ is a constant depending on the choice of
backtracking parameter, see [9, Section 11.5.5]. Therefore, the number of Newton iterations
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Figure 3.4: Duration of convex minimization problem to find closest reversible
Markov chain.

is bounded by O(n logn). Unfortunately, each Newton iteration has to solve a linear equation
system and cost O((n2)3) since Q ∈ R(n2

2 +1)×(n2
2 +1). Therefore, the total cost for the

optimization problem is bounded by O(n7 logn). In the field of convex optimization, is is
known that the upper bound for the number of Newton iterations is a large overestimation
[9]. If we assume this number to be independent from n, then we can expect the time to
find a solution using the convex optimization problem to be given by

g(n) = αn6

where n is the size of the matrix T̃ ∈ Rn×n. If we include the bad estimation for the Newton
iteration, then the time should be represented by

f(n) = βn7 log(n).

In order to explore the computation time of the convex optimization problem, for each
n = 10, 11 . . . , 100 we generated a stochastic matrix A ∈ Rn×n and a random probability
vector π̂ ∈ Rn, in which each entry was drawn from the standard uniform distribution
on the open interval (0, 1), and then we normalized A and π̂. We used Matlab R2012b
on a 3 GHz computer with 8 GB RAM. We solved the convex optimization problem using
the interior-point-convex algorithm of the provided Matlab method quadprog with default
options, i.e. relative dual feasibility =2.31e − 15 with TolFun=1e − 0.8, complementarity
measure =1.68e− 10 with TolFun=1e− 0.8 and relative max constraint violoation = 0 with
TolCon=1e − 0.8. For n = 45 the execution time was about 12.46 seconds. The scalars
α, β where chosen such that f(45) = g(45) = 12.46

60 holds. In Figure 3.4 one can see that g
seems to be a reasonable approximation of the execution time. Also one can see that the
execution is a matter of only seconds for matrices in R50×50, but takes more then 20 minutes
for matrices in R100×100.
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Eigenvalue Analysis
The reason for wanting to approximate a Galerkin projection, was to obtain the corresponding
eigenvalues and eigenvectors. It is beneficial to correct the error in the Galerkin projection
by finding the nearest π̂-reversible matrix, because this results in real eigenvalues and
real eigenvectors. However, we have not discussed which matrix norm would be the best
choice in order to maintain the spectrum of the unperturbed Galerkin discretization. At first
glance the Frobenius norm seems to be a reasonable choice, because it would return the
π̂-reversible matrix which is closest according to the euclidean distance. To find out whether
the Frobenius norm is a good choice, we will conduct a small experiment. This time, we
consider the 2π̂-periodic function VB : R→ R

VB(x) = a+ b cos(x) + c cos2(x) + d cos3(x)

with a=2.0567, b=-4.0567, c=0.3133 and d=6.4267. This can be seen as an approximation
of butane’s potential energy function, see Figure 2.12, where x is the central dihedral angle.
We are going to realize a trajectory with 5 · 108 timesteps of size dt = 0.001 of the dihedral
angles

Xt = X̃t mod 2π̂

of butane from the stochastic differential equation

dX̃t = −∇VB(X̃t)dt+ σdBt

with perturbation σ =
√

2
2.5 . We divide [0, 2π) into 31 equidistant sets Ai = [ (i−1)2π

31 , i2π31 )
for i = 1, . . . , 31. We then construct a Markov State Model from the long-term trajectory
as explained in the previous chapter, based upon the long trajectory but considering only
between 108 and up to 5 · 108 timesteps. We approximate the vector π using the trapezian
rule. For high-dimensional problems, the vector π can be approximated as explained in [60]
and should not be computed as the left eigenvector of T̃ , since the problem is ill-conditioned
[12, 36]. For each Markov State Model T̃ , we compute the closest π̂-reversible Matrix T ∗

according to the Frobenius norm. The Markov State Models created in this way only becomes
reasonable when considered for a trajectory longer than 106 timesteps, due to rare transition
events.

We will now compare the eigenvalues of the Markov State Model T̃ to the eigenvalues
of the corrected estimation T ∗. Since the eigenvalues of T̃ sometimes turned out to be
complex , we simply set the imaginary part to zero, in order to compare the eigenvalues with
T ∗. Butane’s potential energy function has three metastable sets, and thus in addition to
eigenvalue 1 it has two dominant eigenvalues close two 1. In Figure 3.5 one can observe that
the eigenvalues of the correction T ∗ are having difficulties staying close to the spectrum of
the standard estimation T̃ , even if we consider 2 ·108 timesteps from our long-term trajectory.
For the approximation of the non-dominant eigenvalues, the estimation of the eigenvalues
becomes even worse, resulting in a fixed gap between the eigenvalues of T̃ and T ∗ as shown
in Figure 3.6. Thus, the question arises whether the Frobenius norm really is the best
choice. Recall that there exists an exact π-reversible transition matrix T and we only have
access to an approximation T̃ of T which is not necessarily π-reversible due to numerical
errors. We can then construct a closest π̂-reversible matrix T ∗ that is in general different
from T , but we assume that T ∗ is at least close to T . Thus, to assure that the eigenvalues
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Figure 3.5: Approximation of second-largest eigenvalue (left) and the thrid-largest
eigenvalue (right) for different Markov State Models. Red is the eigen-
value from the standard approximation T , blue is the eigenvalue from
the corrected approximation T ∗ according to Frobenius norm.
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Figure 3.6: Approximation of fourth-largest eigenvalue (left) and the fifth-largest
eigenvalue (right) for different Markov State Models. Red is the eigen-
value from the standard approximation T̃ , blue is the eigenvalue from
the corrected approximation T ∗ according to Frobenius norm.
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of T ∗ are close to the eigenvalues of T , it would be useful to find a relation between the
eigenvalue approximation and the distance between T ∗ and T . Such a relation can be found
by considering the following weighted Frobenius norm

||A||
F̃

:= ||D 1
2AD−

1
2 ||F

with
D = diag(π̂1, . . . , π̂n), D

1
2D

1
2 = D

and
D−

1
2 := (D 1

2 )−1.

Note that the weighted Frobenius norm is given by

||A||2
F̃

=
n∑

i,j=1
a2
i,j

π̂i
π̂j
.

From this weighted Frobenius norm we gain the following relation between the distance and
the eigenvalues. If λ1, . . . , λn are the eigenvalues of T , and λ̂1, . . . , λ̂n are the eigenvalues of
T ∗, then a permutation σ exists such that

n∑
i=1
|λ̂σ(i) − λi|2 ≤ ||T − T ∗||2F̃

holds. This is shown in the following theorem.

Theorem 3.3.1. Let A,B ∈ X, let λ1, . . . , λn be the eigenvalues of A and λ̂1, . . . , λ̂n be the
eigenvalues of B. There then exists a permutation σ of the integers 1, 2, . . . , n such that

n∑
i=1
|λ̂σ(i) − λi|2 ≤ ||A−B||2F̃ .

Proof. The matrices A,B ∈ X are self-adjoint according to the scalar product 〈x, y〉π :=
xTDy. Let us denote by {w1, . . . , wn} a 〈, 〉π-orthonormal basis, and denote with W the
matrix with columns containing the vectors wi, i.e.

W =

 w1 w2 . . . wn

 .

Then
A′ := W−1AW and B′ = W−1BW

are symmetric, see [19, Chapter 5.6.1]. By the Hoffman and Wielandt Theorem [24,
Theorem 6.3.5] we obtain

n∑
i=1
|λ̂σ(i) − λi|2 ≤ ||A′ −B′||2F

for a permutation σ, because similar matrices have the same eigenvalues. It remains to show

||W−1CW ||2F = ||C||2
F̃
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or equivalently
||C||2F = ||WCW−1||2

F̃

for any matrix C ∈ Rn. By construction of W we have

WTDW = I and W−1D−1(WT )−1 = I. (3.2)

Therefore,

||WCW−1||2
F̃

= ||D 1
2WCW−1D−

1
2 ||2F

= tr(D− 1
2 (W−1)TCTWTD

1
2D

1
2WCW−1D−

1
2 )

(∗)= tr(W−1D−1(W−1)TCTWTDWC)
(3.2)= tr(CTC)

= ||C||2F ,

where in (∗) it is used that the trace is invariant under cyclic permutations .

This shows that in order to guarantee good approximations for the eigenvalues, one has
to assure a good approximation of aij for those i, j in which π̂j << π̂i. These transitions
are also known as rare events and often difficult to compute. Approximating the closest
π̂-reversible matrix according to this weighted norm actually improves the eigenvalue
estimation dramatically. This is shown in the Figures 3.7-3.10.

So far, we know how to regain reversibility for the approximation S̃ of S and the approxi-
mation T̃ of T separately. The question arises of whether the reversibility of S̃ and T̃ implies
that the final result (S̃∗)−1T̃ ∗ also inherits a real spectrum and real eigenvectors. To address
this, we firstly rewrite

S = D−1Ŝ, T = D−1T̂

with Ŝij = 〈φi, φj〉µ and T̂ij = 〈T φi, φj〉µ, hence

S−1T = Ŝ−1DD−1T̂ = Ŝ−1T̂ .

Analogously to what has been shown for Q, Ŝ and Ŝ−1 are also symmetric positive definite
matrices. Now, since Ŝ−1 is positive definite, we know that a symmetric square matrix A
exists such that A2 = Ŝ−1. Thus, A−1Ŝ−1T̂A = AT̂A. Consequently, Ŝ−1T̂ is similar to a
symmetric matrix and hence diagonalizable. This shows that the spectrum of Ŝ−1T̂ is real
and that we know the existence of a basis of eigenvectors of S−1T . Thus we can also assume
that after correcting S̃ and T̃ separately, the resulting matrix (S̃∗)−1T̃ ∗ has the desired
property to assure the applicability of the method PCCA+.

Finally, we can extend the method PCCA+ for arbitrary processes with a stationary
measure as follows. First, compute the matrices S̃ and T̃ associated to the arbitrary process.
Secondly, compute (S̃∗)−1T̃ ∗ which is applicable for PCCA+. This correction can be seen
as a small perturbation of the system. If one assumes that the perturbation of the system
does not fundamentally change the metastable sets, then the metastable sets of this adjusted
Galerkin Projection can be assumed to be metastable sets of the arbitrary process.
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Figure 3.7: Second-largest eigenvalue.
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Figure 3.8: Third-largest eigenvalue.
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Summary
The focus of this doctoral thesis is the transfer operator, a tool that describes the propagation
of probability densities of an arbitrary dynamical system. This tool is usable for any moving
object that one wants to analyze, and thus has applications in subjects like population
statistics, the prediction of stock prices, and computational drug design.

The first part of this doctoral thesis is a purely theoretical investigation of the transfer
operator. Characterizations of transfer operators and adjoint transfer operators are revealed.
It is shown that Markov operators and transfer operators are equivalent. Further it is shown
that an adjoint operator of a transfer operator is equivalent to a generalized Koopman
operator, and that an adjoint operator of a transfer operator with an invariant measure is
equivalent to a Brown-Markov operator. All three characterizations are independent of a
transition kernel. The last characterization is disproving a claim made in 1966.

Diverse applications require a Galerkin projection of the transfer operator. Therefore, the
second part of this thesis reveals possible ways of improving the computation of a Galerkin
projection on an arbitrary function space. An exact formula of the error by the difference
in the L2 norm between the Galerkin entry and its approximation through a Monte Carlo
method is deduced for long and short-term trajectory approaches. The formula enables us
to approximate the Galerkin error itself by trajectories. It is shown that the error of the
Galerkin projection is dramatically reduced when using short-term trajectories instead of
a single long-term trajectory. Further, a characteristic of reversible processes is discovered,
which shows that reversible processes are more likely to return to set than to be there.
Next, a reweighting scheme is introduced that improves available techniques for obtaining a
Galerkin projection for a typical scenario that often appears in computational drug design. It
is shown that the Galerkin projections for multiple, similar ligands that bind to one receptor
can be computed using trajectories of just one single ligand and the corresponding weights.
Computation of the weights proves more advantageous than computing the trajectories
separately for each ligand.

The final result presented in this thesis shows how to correct the numerical error of a
Galerkin projection. This is useful for cases in which the numerical error might render the
frequently employed clustering method PCCA+ to be inapplicable. It is shown that one
can restore a particular property of a Galerkin projection that assures applicability of the
method PCCA+. More precisely, for almost any norm and any transition matrix a closest
reversible matrix exists, which can be computed by solving a strongly convex quadratic
problem. Further, a norm is introduced which heavily weights transition probabilities of
rare events. This norm has the property that the closest reversible matrix will preserve the
spectrum. Application of the method PCCA+ was until now restricted to reversible processes.
However, the correction scheme for the Galerkin projection opens the door to use of the
method PCCA+ for arbitrary systems.

In summary, this thesis reveals theoretical aspects of the transfer operator that are then
used to derive methods to optimize and correct the computation of the Galerkin projection.
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Zusammenfassung
Der Fokus dieser Dissertation ist der Transferoperator. Dies ist ein Werkzeug, um die Ausbrei-
tung von Wahrscheinlichkeitsdichten eines beliebigen dynamischen Systems zu beschreiben.
Dieses Werkzeug ist benutzbar für jedes bewegende Objekt, welches man analysieren möchte
und hat deswegen auch Anwendungen in Bereichen wie Bevölkerungsstatistik, die Vorher-
sage von Aktienkursen und Wirkstoffdesign.

Im ersten Teil dieser Arbeit wird gezeigt, dass Markov Operatoren und Transfer Oper-
atoren identisch sind. Außerdem wird die Klasse der adjungierten Transfer Operatoren
durch generalisierte Koopman Operatoren charakterisiert. Schließlich wird die Klasse der
adjungierten Transfer Operatoren bezüglich eines invarianten Maßes durch Brown-Markov
Operatoren charakterisiert. Dies widerlegt eine Behauptung aus dem Jahr 1966.

Im zweiten Teil dieser Arbeit wird gezeigt, wie man die Berechnung der Galerkin Projek-
tion optimieren kann. Eine exakte Formel für den Galerkin Fehler für kurz und lang-zeit
Trajektorien wird hergeleitet. Der Galerkin Fehler selbst kann durch die Formel wiederum
mit Trajektorien approximiert werden. Es wurde gezeigt, dass der Fehler durch kurz-zeit
Trajektorien dramatisch reduziert wird gegenüber lang-zeit Trajektorien. Eine Charakteristik
von reversiblen Prozessen ist entdeckt worden, welche zeigt, dass reversible Prozesse lieber
in eine Menge zurückkehren, anstatt sich in der Menge zu befinden. Abschließend wird eine
Umgewichtungsstrategie eingeführt, welche die Berechnung der Galerkin Projektion opti-
miert. Es wird gezeigt, dass Galerkin Projektionen für mehrere, ähnliche Systeme berechnet
werden können, nur durch Trajektorien von einem System und Gewichten. Es stellt sich
heraus, dass die Gewichte einfacher zu berechnen sind als die Berechnung neuer Trajektorien
für jedes System.

Das abschließende Resultat dieser Arbeit zeigt, wie man den numerischen Fehler von einer
Galerkin Projektion korrigieren kann. Dies ist sinnvoll in Fällen, in denen der numerische
Fehler die häufig benutze Methode PCCA+ unanwendbar macht. Es wird gezeigt, dass
man eine bestimmte Eigenschaft der Galerkin Projektion wieder herstellen kann, welche
garantiert, dass die Methode PCCA+ anwendbar ist. Genauer: Es wird gezeigt, dass
für jede stochastische Matrix eine am nächsten gelegene reversible stochastische Matrix
existiert, welche durch ein stark konvexes Optimierungsproblem berechnet werden kann. Die
Methode PCCA+ war bisher auf reversible Prozesse eingeschränkt. Mit der oben erklärten
Korrekturmethode, ist PCCA+ nun für beliebige Systeme anwendbar.

Insgesamt hat diese Arbeit theoretische Aspekte vom Transferoperator aufgezeigt, durch
deren Kenntnis Methoden entwickelt wurden, um die Berechnung der Galerkin Projektion
vom Transferoperator zu optimieren und zu korrigieren.

95





Bibliography

[1]Karol Baron and Andrzej Lasota. „Asymptotic properties of Markov operators defined
by Volterra type integrals“. In: Annales Polonici Mathematici 58 (1993) (cit. on p. 28).

[2]Wojciech Bartoszek and Tom Brown. „On Frobenius-Perron operators which overlap
supports“. In: Polish Academy of Sciences and Mathematics 45 () (cit. on p. 28).

[3]Heinz Bauer. Maß und Integrationstheorie. 2nd. Berlin; New York: Walter de Gruyter,
1992 (cit. on pp. 6–8, 30).

[4]Heinz Bauer. Wahrscheinlichkeitstheorie. 5nd. Berlin; New York: Walter de Gruyter,
2002 (cit. on pp. 9, 10, 12, 43).

[5]John R. Baxter and Jeffrey S. Rosenthal. „Rates of convergence for everywhere-positive
Markov chains“. In: Statistics & Probability Letters 22 (1995), pp. 333–338 (cit. on
pp. 19, 39).

[6]George D. Birkhoff. „Proof of the ergoic theorem“. In: Proc Natl Acad Sci USA 17.12
(1931), pp. 656–660 (cit. on pp. 1, 14).

[7]Ludwig Boltzmann. Vorlesung über Gastheorie. J.A.Barth, 1898 (cit. on p. 13).

[8]Gregory R. Bowman, Vijay S. Pande, and Frank Noé. An Introduction to Markov State
Models and Their Application to Long Timescale Molecular Simulation. 1th. Springer,
2011 (cit. on p. 42).

[9]Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004 (cit. on pp. 75, 83, 84).

[10]James R. Brown. „Approximation theorems for Markov operators.“ In: Pacific J. Math.
16.1 (1966), pp. 13–23 (cit. on pp. 2, 28, 29).

[11]Alexander Bujotzek, Ole Schütt, Adam Nielsen, Konstantin Fackeldey, and Marcus
Weber. „ZIBgridfree: Efficient Conformational Analysis by Partition-of-Unity Coupling.“
In: Journal of Mathematical Chemistry 52.3 (2014), pp. 781–804 (cit. on p. 42).

[12]Grace E. Cho and Carl D. Meyer. „Comparison of perturbation bounds for the stationary
distribution of a Markov chain“. In: Linear Algebra and its Applications 335.1–3 (2001),
pp. 137 –150 (cit. on pp. 51, 85).

[13]Kai L. Chung. Markov Chains with Stationary Transition Probabilities. second edition.
Berlin: Springer-Verlag, 1974 (cit. on p. 10).

97



[14]Peter Deuflhard and Marcus Weber. „Robust Perron Cluster Analysis in Conformation
Dynamics“. In: In Linear Algebra and Its Applications - Special Issue on Matrices and
Mathematical Biology,volume 398C (2005), pp. 161–184 (cit. on pp. 1, 36).

[15]Jiu Ding and Tien Yien Li. „Markov finite approximation of Frobenius-Perron operator“.
In: Nonlinear Analysis: Theory, Methods & Applications 17.8 (1991), pp. 759 –772 (cit. on
p. 46).

[16]Roland L. Dobrushin, Yuri M. Sukhov, and József Fritz. „A. N. Kolmogorov - the founder
of the theory of reversible Markov processes“. In: Russian Mathematical Surveys 43.6
(1988), p. 157 (cit. on pp. 2, 19).

[17]Joeph L. Doob. Stochastic Processes. New York: John Wiley & Sons, 1953 (cit. on p. 10).

[18]Rick Durrett. Probability: Theory and Examples. fourth edition. Cambridge University
Press, 2005 (cit. on pp. 10, 11).

[19]Gerd Fischer. Lineare Algebra. 15th. Vieweg, 2005 (cit. on p. 87).

[20]Shaul R. Foguel. The Ergodic Theory of Markov Processes. Van Nostrand Reinhold Com-
pany, 1969 (cit. on pp. 2, 15, 24).

[21]Thomas Gerstner and Michael Griebel. „Sparse Grids“. In: Encyclopedia of Quantitative
Finance. Ed. by R. Cont. John Wiley and Sons, Feb. 2010 (cit. on p. 42).

[22]Paul R. Halmos. „Measurable transformations“. In: Bull. Amer. Math. Soc. 55.11 (Nov.
1949), pp. 1015–1034 (cit. on p. 14).

[23]Eberhard Hopf. The general temporally discrete Markoff process. Vol. 3. 1954, pp. 13–45
(cit. on pp. 1, 15, 24, 30, 45).

[24]Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
1985 (cit. on p. 87).

[25]Reiner Horst, Panos M. Pardalos, and Nguyen V. Thoai. Introduction to Global Optimiza-
tion. Kluwer Academic Publishers, 1995 (cit. on p. 82).

[26]Wilhelm Huisinga. „Metastability of Markovian systems“. PhD thesis. Freie Universität
Berlin, 2001 (cit. on p. 20).

[27]Wilhelm Huisinga and Bernd Schmidt. „Metastability and Dominan Eigenvaues of
Transfer Operators“. In: Lecture Notes in Computational Science and Engineering 49
(2006), pp. 167–182 (cit. on p. 36).

[28]Oliver Junge and Péter Koltai. „Discretization of the Frobenius–Perron Operator Using a
Sparse Haar Tensor Basis: The Sparse Ulam Method“. In: SIAM Journal on Numerical
Analysis 47.5 (2009), pp. 3464–3485 (cit. on p. 42).

[29]Shizuo Kakutani. „Random Ergodic Theorems and Markoff Processes with a Stable
Distribution“. In: Proceedings of the Second Berkeley Symposium on Mathematical Statis-
tics and Probability. Berkeley, Calif.: University of California Press, 1951, pp. 247–261
(cit. on p. 30).

[30]Andrei N. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933
(cit. on p. 5).

98 Bibliography



[31]Andrei N. Kolmogoroff. „Zur Umkehrbarkeit der statistischen Naturgesetze“. German.
In: Mathematische Annalen 113.1 (1937), pp. 766–772 (cit. on p. 19).

[32]Tomasz Komorowski and Joanna Tyrcha. „Asymptotic Properties of Some Markov
Operators“. In: Polish Academy of Sciences and Mathematics 37 (1989) (cit. on p. 28).

[33]Ulrich Krengel. Ergodic theorems. English. W. de Gruyter Berlin ; New York, 1985, vii,
357 p. ; (cit. on pp. 14, 16).

[34]Andrzej Lasota and Michael C. Mackey. Chaos, Fractals, and Noise. Springer, 1994
(cit. on pp. 7, 23, 27, 28, 32).

[35]David J. C. MacKay. „Introduction to Monte Carlo Methods“. In: Learning in Graphical
Models. Ed. by M. I. Jordan. NATO Science Series. Kluwer Academic Press, 1998,
pp. 175–204 (cit. on p. 49).

[36]Carl D. Meyer. „Sensitivity Of The Stationary Distribution Of A Markov Chain“. In: SIAM
Journal on Matrix Analysis and Applications 15 (1994), pp. 715–728 (cit. on pp. 51, 85).

[37]Sean Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. second
edition. New York: Cambridge University Press, 2009 (cit. on pp. 10, 11, 55).

[38]Laurent Miclo. „On hyperboundedness and spectrum of Markov operators“. English. In:
Inventiones mathematicae 200.1 (2015), pp. 311–343 (cit. on p. 44).

[39]John von Neumann. „Proof of the Quasi-ergodic Hypothesis“. In: Proc Natl Acad Sci USA
18 (1932), pp. 70–82 (cit. on p. 1).

[40]Adam Nielsen. „Von Femtosekunden zu Minuten“. Updated version from September,
2015. MA thesis. Freie Universität Berlin, 2012 (cit. on pp. 12, 16, 17, 27, 44).

[41]Adam Nielsen and Marcus Weber. „Computing the nearest reversible Markov chain“. In:
Numerical Linear Algebra with Applications 22.3 (2015), pp. 483–499 (cit. on p. 73).

[42]Bernt K. Øksendal. Stochastic differential equations: an introduction with applications.
6th ed. Berlin, Heidelberg, New York: Springer Verlag, 2003 (cit. on pp. 43, 64).

[43]Grigorios A. Pavliotis. Stochastic Processes and Applications. Springer, 2014 (cit. on
p. 44).

[44]Henri Poincaré. „Sur le problème des trois corps et les équations de la dynamique“. In:
Acta Math. 13 (1890), pp. 1–270 (cit. on p. 13).

[45]Ottis W. Rechard. „Invariant measures for many-one transformations“. In: Duke Math. J.
23.3 (Sept. 1956), pp. 477–488 (cit. on p. 45).

[46]Daniel Revuz. Markov Chains. 2nd. North-Holland Mathematical Library, 1984 (cit. on
pp. 10–12, 26).

[47]Susanna Röblitz. „Statistical Error Estimation and Grid-free Hierarchical Refinement in
Conformation Dynamics“. PhD thesis. Freie Universität Berlin, 2008 (cit. on pp. 37, 42,
48).

[48]Ryszard Rudnicki. „Markov operators: applications to diffusion processes and population
dynamics“. eng. In: Applicationes Mathematicae 27.1 (2000), pp. 67–79 (cit. on p. 28).

Bibliography 99



[49]Marco Sarich. „Projected Transfer Operators“. PhD thesis. Freie Universität Berlin, 2011
(cit. on pp. 39, 43).

[50]Christof Schütte. „Conformational Dynamics: Modelling, Theorey, Algorithm, and Ap-
plcation to Biomolecules.“ Habilitation. Freie Universität Berlin, 1999 (cit. on p. 46).

[51]Christof Schütte, Adam Nielsen, and Marcus Weber. „Markov state models and molecular
alchemy“. In: Molecular Physics, 113.1 (2014) (cit. on pp. 63, 65).

[52]Christof Schütte, Wilhelm Huisinga, and Peter Deuflhard. „Transfer Operator Approach
to Conformational Dynamics in Biomolecular Systems“. English. In: (2001). Ed. by
Bernold Fiedler, pp. 191–223 (cit. on pp. 1, 5).

[53]Christof Schütte and Marco Sarich. „A critical appraisal of Markov state models“. English.
In: The European Physical Journal Special Topics (2015), pp. 1–18 (cit. on p. 2).

[54]Christof Schütte and Marco Sarich. Metastability and Markov State Models in Molecular
Dynamics: Modeling, Analysis, Algorithmic Approaches. A co-publication of the AMS and
the Courant Institute of Mathematical Sciences at New York University. 2014 (cit. on
p. 43).

[55]Daniel W. Stroock and Sathamangalam R.S. Varadhan. Multidimensional Diffusion
processes. Berlin, Heidelberg: Springer, 2006 (cit. on p. 64).

[56]Domokos Szász. „Hard Ball Systems and the Lorentz Gas“. In: ed. by Domokos Szász.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. Chap. Boltzmann’s Ergodic Hy-
pothesis, a Conjecture for Centuries?, pp. 421–446 (cit. on p. 13).

[57]Stanisław M. Ulam. A Collection of Mathematical Problems. 1st ed. Interscience, 1960
(cit. on pp. 2, 14, 45).

[58]Marcus Weber. „A Subspace Approach to Molecular Markov State Models via a New
Infinitesimal Generator“. Habilitation. Freie Universität Berlin, 2012 (cit. on pp. 42,
48).

[59]Marcus Weber. „Meshless Methods in Conformation Dynamics“. PhD thesis. Freie
Universität Berlin, 2006 (cit. on pp. 37, 42, 48).

[60]Marcus Weber, Susanna Kube, Lionek Walter, and Peter Deuflhard. „Stable Computation
of Probability Densities for Metastable Dynamical Systems“. In: SIAM J. Multisc. Mod.
Sim. 6.2 (2007) (cit. on pp. 39, 51, 53, 85).

[61]Dirk Werner. Funktionalanalysis. 7th. Springer, 2011 (cit. on p. 9).

[62]Christoph Zenger. „Sparse grids“. In: Parallel algorithms for partial differential equations
(1991). Ed. by W.Hackbusch (cit. on p. 42).

100 Bibliography


	Acknowledgements
	Introduction
	1 Operators
	1.1 Fundamentals
	1.2 Transfer Operators
	1.3 Related Operators

	2 Computation schemes
	2.1 State of the Art
	2.2 Basic Computation
	2.3 The Girsanov Reweighting Scheme

	3 Make it Reversible
	3.1 The Reversible Property
	3.2 Finding the Closest Reversible Matrix
	3.3 Complexity and Eigenvalues

	Summary
	Zusammenfassung
	Bibliography

